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Abstract. The Black–Scholes implied total variance function is defined by

VBS(k, c) = v ⇔ Φ
(
− k/

√
v +
√
v/2
)
− ekΦ

(
− k/

√
v −
√
v/2
)

= c.

The new formula
VBS(k, c) = inf

x∈R

[
Φ−1

(
c + ekΦ(x)

)
− x
]2

is proven. Uniform bounds on the function VBS are deduced and illustrated numerically.
As a by-product of this analysis, it is proven that F is the distribution function of a log-
concave probability measure if and only if F (F−1(·) + b) is concave for all b ≥ 0. From this,
an interesting class of peacocks is constructed.

1. Introduction

Define the Black–Scholes call price function CBS : R× [0,∞)→ [0, 1) by

CBS(k, v) =

∫ ∞
−∞

(e
√
vz−v/2 − ek)+φ(z)dz

=

{
Φ
(
− k√

v
+
√
v
2

)
− ekΦ

(
− k√

v
−
√
v
2

)
if v > 0

(1− ek)+ if v = 0,

where φ(z) = 1√
2π
e−z

2/2 is the standard normal density and Φ(x) =
∫ x
−∞ φ(z)dz is its distri-

bution function. As is well known, the financial significance of the function CBS is that the
minimal replication cost of a European call option on a stock with strike K and maturity T
in the Black–Scholes model [4] is given by the formula

replication cost = S0e
−δTCBS

[
log

(
Ke−rT

S0e−δT

)
, σ2T

]
where S0 is the initial stock price, δ is the dividend rate, r is the interest rate and σ is the
volatility of the stock. Therefore, in the definition of CBS(k, v), the first argument k plays
the role of log-moneyness and the second argument v is the total variance of the terminal
log stock price.

Of the six parameters appearing in the Black–Scholes formula for the replication cost, five
are readily observed in the market. Indeed, the strike K and maturity date T are specified
by the option contract, and the initial stock price S0 is quoted. The interest rate is the yield
of a zero-coupon bond B0,T with maturity T and unit face value, and can be computed from
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the initial bond price via B0,T = e−rT . Similarly, the dividend rate can computed from the
stock’s initial time-T forward price F0,T = S0e

(r−δ)T .
As suggested by Latane & Rendleman [13] in 1976, the remaining parameter, the volatility

σ, can also be inferred from the market, assuming that the call has a quoted price Cquoted.
Indeed, note that for fixed k, the map CBS(k, ·) is strictly increasing and continuous, so we
can define the inverse function

VBS(k, ·) : [(1− ek)+, 1)→ [0,∞)

by
v = VBS(k, c)⇔ CBS(k, v) = c.

The implied total variance of the call option is then defined to be

V implied = VBS

[
log

(
Ke−rT

S0e−δT

)
,
Cquoted

S0e−δT

]
,

and the implied volatility is

σimplied =

√
V implied

T
.

Because of its financial significance, the function VBS has been the subject of much interest.
Unfortunately, there seems to be only one case where VBS can be computed explicitly: when
k = 0 we have

CBS(0, v) = 2Φ

(√
v

2

)
− 1

and hence

VBS(0, c) = 4

[
Φ−1

(
1 + c

2

)]2
.

In the general case, the function VBS can be evaluated numerically as suggested by Manaster
& Koehler [16] in 1982. Since then, there have been a number of approximations [5, 6, 15, 17]
proposed as well as model-independent asymptotic formulae [2, 3, 7, 8, 9, 14, 19] for implied
volatility.

The main purpose of this note is to give a new exact formula for VBS:

Theorem 1.1. For all k ∈ R and (1− ek)+ ≤ c < 1 we have

VBS(k, c) = inf
x∈R

[
Φ−1

(
c+ ekΦ(x)

)
− x
]2

= inf
y∈R

[
y − Φ−1

(
e−k(Φ(y)− c)

)]2
.

Furthermore, if c > (1− ek)+, then the two infima are attained at

x∗ = − k√
v
−
√
v

2
,

y∗ = − k√
v

+

√
v

2

where v = VBS(k, c).

Remark 1.2. We are using the convention that Φ−1(u) = +∞ for u ≥ 1 and Φ−1(u) = −∞
for u ≤ 0.
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The rest of the note is organised as follows. In section 2 the proof of Theorem 1.1 is
presented. The main step is a duality Lemma 2.1 which may have some independent interest.
In section 3 are some applications of Theorem 1.1 to give uniform bounds, strengthening
existing asymptotic results. In section 4 these bounds are applied to study the shape of the
implied volatility smile in the context of a general market model. In section 5, the bounds
from section 3 are investigated numerically. Finally, in section 6, a generalisation of Lemma
2.1 gives rise to a characterisation of log-concave distributions. From this, an interesting
class of peacocks (in the sense of Hirsh, Profeta, Roynette & Yor [10]) is constructed.

2. A duality formula for Black–Scholes call prices

The main result of this section is the following duality formula:

Lemma 2.1. For all k ∈ R and v ≥ 0 we have

CBS(k, v) = sup
u∈[0,1]

[
Φ
(
Φ−1(u) +

√
v
)
− eku

]
.

Proof. Fix k ∈ R and v ≥ 0 and let

g(u) = Φ
(
Φ−1(u) +

√
v
)
− eku.

If v = 0 then g(u) = u(1 − ek) ≤ (1 − ek)+ with equality if u = 1{k<0}. So suppose v > 0.
Note that the derivative is given by

g′(u) =
φ
(
Φ−1(u) +

√
v
)

φ
(
Φ−1(u)

) − ek

= exp
(
−
√
vΦ−1(u)− v/2

)
− ek.

In particular g′(u∗) = 0 where

u∗ = Φ(−k/
√
v −
√
v/2).

Since g′ is strictly decreasing, the function g is concave and hence

g(u) ≤ g(u∗) = CBS(k, v) for all u ∈ [0, 1].

�

Remark 2.2. The function u 7→ Φ
(
Φ−1(u) +

√
v
)

appeared as the value function of the
problem of maximising the probability of a perfect hedge considered by Kulldorff [12]. (Also
see Section 2.6 of the book of Karatzas[11].) This function is increasing and concave, and
as in the Lagrangian duality approach to utility maximisation, it is natural to compute its
convex dual function. Lemma 2.1 says that this dual function is essentially the Black–Scholes
call price function. We will return to this theme in section 6.

Proof of Theorem 1.1. Fix k ∈ R and (1 − ek)+ ≤ c < 1 and let v ≥ 0 be such that
CBS(k, v) = c.

First, suppose c > (1− ek)+ and hence v > 0. By Lemma 2.1 we have

Φ
(
x+
√
v
)
− ekΦ(x) ≤ c

with equality with

x∗ = Φ−1(u∗) = −k/
√
v −
√
v/2.
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Rearranging yields √
VBS(k, c) = inf

x∈R

[
Φ−1

(
c+ ekΦ(x)

)
− x
]
.

Since the left-hand side is non-negative, we have

Φ−1
(
c+ ekΦ(x)

)
− x ≥ 0

for all x ∈ R. In particular, the square of the infimum is the infimum of the square, which
yields the first expression. Let x = Φ−1

(
e−k(Φ(y)− c)

)
in the above infimum to obtain the

second expression.
The case where c = (1 − ek)+ and hence v = 0 can be dealt with by continuity, or by

noting that if k ≥ 0 and c = 0, the map

x 7→ Φ−1(ekΦ(x))− x
is increasing and tends to 0 as x ↓ −∞. Similarly, if k < 0 and c = 1− ek then the map

x 7→ Φ−1(1− ek + ekΦ(x)) + x = −Φ−1(ekΦ(−x)) + x

is decreasing and tends to 0 as x ↑ +∞. �

3. Uniform bounds

In their long survey article of [1], Anderson & Lipton warn that the many asymptotic
implied volatility formulae that have appeared in recent years may not be applicable in
practice, since typical market parameters are usually not in the range of validity of any of
the proposed asymptotic regimes. The benefit of the new formula of Theorem 1.1 is that it
yields upper bounds for implied volatility which hold uniformly, without any assumptions
on parameter values. Indeed, the following bounds are completely model-independent since,
of course, only the definition of the function VBS is used.

In this section, in order to treat the cases k ≥ 0 and k < 0 as symmetrically and efficiently
as possible, we introduce some notation. First, let

P (k, c) = c+ ek − 1.

Note that if c is a call price, then P (k, c) is the corresponding put price by put-call parity.
Now we define a symmetrised call price by

Ĉ(k, c) =

{
c if k ≥ 0
e−kP (k, c) if k < 0.

This notation is a way to capture the Black–Scholes put-call symmetry identity

Ĉ(k, CBS(k, v)) = CBS(|k|, v).

Many of the proposed asymptotic expansion in the literature rely on the fact that

Φ(−x) =
φ(x)

x
(1 + o(1))

as x ↑ +∞ and hence

Φ−1(ε) = −
√
−2 log ε+ o(1)

or even more precisely[
Φ−1(ε)

]2
= −2 log ε− log(− log ε)− log(4π) + o(1)
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as ε ↓ 0. Rather surprisingly, in several of the following examples, we will see that by
replacing expressions of the form −

√
−2 log ε in the asymptotic expansion with Φ−1(ε) we

essentially recover a uniform bound.
For example, Gulisashvili [9] showed that if c(k) ↓ 0 as k ↑ +∞ then√

V (k, c(k)) =
√

2
(√

k − log c(k)−
√
− log c(k)

)
+ o(1).

Similarly, it was shown that if e−kp(k) ↓ 0 as k ↓ −∞ then√
V (k, c(k)) =

√
2
(√
− log p(k)−

√
k − log p(k)

)
+ o(1).

where c(k) = 1− ek + p(k). A uniform version is this:

Corollary 3.1. For all k ∈ R and (1− ek)+ ≤ c < 1, we have√
V (k, c) ≤ Φ−1(2ĉ)− Φ−1(e−|k|ĉ)

=

{
Φ−1(2c)− Φ−1(e−kc) if k ≥ 0
Φ−1(2e−kp)− Φ−1(p) if k < 0

where ĉ = Ĉ(k, c) and p = P (k, c).

Proof. When k ≥ 0, let x = Φ−1(e−kc) in Theorem 1.1. And in the case k < 0, let y =
Φ−1(2− ek − c) = Φ−1(1− p). �

For another example, in [19], it was shown that

VBS(k, c) = −8 log(1− c)− 4 log[− log(1− c)] + 4k − 4 log π + o(1)

as c ↑ 1. A uniform version of this asymptotic is this:

Corollary 3.2. For all k ∈ R and (1− ek)+ ≤ c < 1, we have

VBS(k, c) ≤ 4

[
Φ−1

(
1− c
1 + ek

)]2
Proof. Let x = Φ−1

(
1−c
1+ek

)
in the Theorem 1.1. �

Remark 3.3. Note that since
1− c
1 + ek

=
1− ĉ

1 + e|k|

the conclusion of Corollary 3.2 can be rewritten as

VBS(k, c) ≤ 4

[
Φ−1

(
1− ĉ

1 + e|k|

)]2
,

to emphasise the symmetry between the k ≥ 0 and k < 0 cases.

The next uniform bound of this section is inspired by a result of Lee [14]. The connection
will be discussed in section 4.
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Corollary 3.4. For all k ∈ R and (1− ek)+ ≤ c < 1, we have√
VBS(k, c) ≤ Φ−1

(
ĉ+ e|k|Φ(−

√
2|k|)

)
+
√

2|k|

=

{
Φ−1(c+ ekΦ(−

√
2k)) +

√
2k if k ≥ 0

Φ−1(e−kp+ e−kΦ(−
√
−2k)) +

√
−2k if k < 0

where ĉ = Ĉ(k, c) and p = P (k, c).

Proof. In the statement of Theorem 1.1, let x = −
√

2k if k ≥ 0, or let y =
√
−2k if k < 0. �

We conclude this section with a lower bound that may be of interest, though it does not
seem to arise directly from Theorem 1.1. Before we begin, we need to introduce the notation

ψ(k, x) = x+
√
x2 + 2|k|

for k, x ∈ R. We will also let ψ(k,−∞) = 0 for all k. Note that ψ(k, ·) is the inverse of the
increasing function y 7→ y/2− |k|/y on [0,∞).

The following lower bound can also be viewed as a uniform version of Gulisashvili’s as-
ymptotic formulae [9] and of the c ↑ 1 formula appearing in [19].

Proposition 3.5. For all k ∈ R and (1− ek)+ ≤ c < 1 we have√
VBS(k, c) ≥ ψ

[
k,Φ−1(ĉ)

]
=

{
Φ−1(c) +

√
[Φ−1(c)]2 + 2k if k ≥ 0

Φ−1(e−kp) +
√

[Φ−1(e−kp)]2 − 2k if k < 0,

where ĉ = Ĉ(k, c) and p = P (k, c).

Proof. Fix k ∈ R and (1 − ek)+ ≤ c < 1 and v = VBS(k, c). The result follows from the
observation that

Φ(−|k|/
√
v +
√
v/2)− ĉ = e|k|Φ(−|k|/

√
v −
√
v/2)

≥ 0.

�

Remark 3.6. Note that we can quickly reprove Gulisashvili’s formula when c(k) ↓ 0 as
k ↑ +∞ as follows: Using Φ−1(ε) = −

√
−2 log ε+ o(1) and Corollary 3.1 we have√

VBS(k, c(k)) ≤ −
√
−2 log c(k) +

√
2k − 2 log c(k) + o(1)

and by Proposition 3.5 we have√
VBS(k, c(k)) ≥ −

√
−2 log c(k) +

√
2k − 2 log c(k) + o(1).

The k ↓ −∞ case is similar.
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4. Applications to smile asymptotics

In this section, we apply the bounds in this previous section in the context of a general
market model. We dispense with the full description of the market, and simply set

c(k) = E[(X − ek)+]

where X = ST/F0,T is a non-negative random variable with E[X] = 1, modelling the ratio
of the terminal stock price to its initial forward price under a fixed pricing measure.

In [14], Lee showed that

lim sup
|k|↑+∞

VBS(k, c(k))

|k|
≤ 2.

The following proposition strengthens this.

Proposition 4.1. √
V (k, c(k))−

√
2k → −∞ as k ↑ +∞√

V (k, c(k))−
√
−2k → Φ−1(P(X = 0)) as k ↓ −∞.

Proof. By Corollary 3.4 we have√
V (k, c(k))−

√
2k ≤ Φ−1(ĉ(k) + e|k|Φ(−

√
2|k|)).

The standard bound on the normal Mills ratio yields

e|k|Φ(−
√

2|k|) ≤ 1√
4π|k|

→ 0 as |k| ↑ ∞.

Since c(k) ↓ 0 as k ↑ ∞ by the dominated convergence theorem, we have

lim
k↑∞

√
V (k, c(k))−

√
2k → −∞

Also, we have for k < 0 that

ĉ(k) = e−kE[(X − ek)+]− ek + 1

= E[(1− e−kX)+]

→ P(X = 0)

as k ↓ −∞, and hence

lim sup
k↓−∞

[√
VBS(k, c(k))−

√
−2k

]
≤ Φ−1(P(X = 0)).

If P(X = 0) = 0, then we are done. So suppose that P(X = 0) > 0. Let a(k) =
Φ−1(e−kp(k)) and

a = lim
k
a(k) = Φ−1(P(X = 0)) > −∞.

Then by Proposition 3.5 we have√
V (k, c(k))−

√
−2k − a ≥ a(k)− a+

√
[a(k)]2 − 2k −

√
−2k

→ 0,

completing the proof. �
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Remark 4.2. The recent paper [7] of De Marco, Hillairet & Jacquier use the above proposition
as a starting point for investigating the shape of the implied volatility smile in the case where
P(X = 0) > 0.

In [14], Lee also proved that if

p∗ = sup{p ≥ 0 : E[X1+p] <∞}

then

lim sup
k↑+∞

VBS(k, c(k))

k
= 2

(√
p∗ + 1−

√
p∗
)2
,

and if

q∗ = sup{q ≥ 0 : E[X−q] <∞}

then

lim sup
k↓−∞

VBS(k, c(k))

−k
= 2

(√
q∗ + 1−

√
q∗
)2
,

The following proposition is a uniform version of this.

Proposition 4.3. Let p ≥ 0 be such that E[X1+p] <∞. Then for k ≥ 0 we have√
VBS(k, c(k)) ≤ Φ−1(2Me−pk)− Φ−1(Me−(p+1)k)

where

M =
pp

(1 + p)1+p
E[X1+p].

Similarly q ≥ 0 be such that E[X−q] <∞. Then for k ≤ 0 we have√
VBS(k, c(k)) ≤ Φ−1(2Neqk)− Φ−1(Ne(q+1)k)

where

N =
qq

(1 + q)1+q
E[X−q].

Proof. Lee [14] showed that

(X − ek)+ ≤ (pe−k)p
(

X
1+p

)1+p
and hence

c(k) ≤Me−pk

for all k. The conclusion follows from the fact that VBS(k, ·) is increasing and Corollary 3.1.
Similarly, for the k ≤ 0 case, Lee showed that

p(k) = 1− ek + c(k) ≤ Ne(q+1)k

and the result again follows from Corollary 3.1. �
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5. Numerical results

In this section, we numerically test the bounds developed in section 3 in various regimes.
By put-call parity, we need only consider the case k ≥ 0.

R1(k, c) = Φ−1(2c)− Φ−1(e−kc)

R2(k, c) = −2 Φ−1
(

1− c
1 + ek

)
R3(k, c) = Φ−1

(
c+ ekΦ(−

√
2k)
)

+
√

2k

R4(k, c) = Φ−1(c) +
√

[Φ−1(c)]2 + 2k.

By the results of section 3 we have for all k ≥ 0 and 0 ≤ c < 1 that

R4(k, c) ≤
√
VBS(k, c) ≤ Ri(k, c) for i = 1, 2, 3.

Figure 1. The graphs of k versus Ri(k, c(k)), where ◦ = R1, ∗ = R2, 2 = R3

and × = R4, and c(k) = CBS(k, v) for v = 0.05 (top left), v = 0.10 (top right),
v = 0.25 (bottom left) and v = 0.80 (bottom right).

In Figure 5, the graphs of the functions k 7→ Ri(k, c(k)) where

c(k) = CBS(k, v)

for various values of v. For comparison, the graphs of k 7→
√
VBS(k, c(k)) =

√
v are also

plotted. It important to note that the graphs do not represent the implied volatility smile
9



for a specific model, but rather they are a way to illustrate the various bounds over the
parameter space (k, c).

It is interesting to observe that the upper bound R2 is an extremely good approximation
when the log-moneyness k is small. In fact, this is not surprising given the exact formula

VBS(0, c) = 4

[
Φ−1

(
1 + c

2

)]2
= 4

[
Φ−1

(
1− c

2

)]2
mentioned in the introduction. The upper bound R1 seems to be reasonably tight across a
range of values of k, and of course, becomes better for large values of v. The upper bound
R3 is seen to be be most tight in the cases where k and v are about of the same size. Finally,
the lower bound R4 only seems to be a good approximation for large k. However, for fixed
k, we have

R4(k, c) = 2
√
−2 log(1− c) + o(1)

= R2(k, c) + o(1)

as c ↑ 1, and hence this bound becomes tight for very large values of v.

6. Log-concave distributions and peacocks

The main observation of section 2 is that the Black–Scholes call pricing function CBS is
essentially (that is, in the variable K = ek) the convex dual of the function Φ(Φ−1(·) +

√
v).

Indeed, the main step in the proof of Lemma 2 is establishing the concavity of this function.
In this section we explore a natural generalisation of this observation. It yields a curious
characterisation of log-concave probality measures on the real line. We will also use this fact
to construct a family of peacocks in the sense of Hirsh, Profeta, Roynette & Yor [10].

Theorem 6.1. Let F be the distribution function of a probability measure with positive,
continuous density f . The function

u 7→ F (F−1(u) + b)

is concave for all b ≥ 0 if and only if f is log-concave.

Proof. Fix b ≥ 0 and let

G(u) = F (F−1(u) + b)

Note that the derivative is given by the formula

G′(u) =
f(F−1(u) + b)

f(F−1(u)
.

Therefore, the function G is concave if and only if G′ is decreasing, or equivalently,

log f(y + b)− log f(x+ b) ≤ log f(y)− log f(x)

for all x ≤ y. This last condition holds for all b ≥ 0 if and only if log f is concave. �
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Let f be a positive log-concave density satisfying the Inada-like condition

lim
x↓−∞

f(x+ b)

f(x)
= +∞ and lim

x↑+∞

f(x+ b)

f(x)
= 0.

Inspired by Lemma 2.1, given a log-concave density f we can define a function Cf : R ×
[0,∞)→ [0, 1) by

Cf (k, v) = sup
u∈[0,1]

F (F−1(u) +
√
v)− uek.

Of course we have Cφ = CBS.
Notice that

• the map v 7→ Cf (k, v) is increasing with Cf (k, 0) = (1− ek)+ for all k ∈ R, and
• the map K 7→ Cf (logK, v) is decreasing and convex for all v ≥ 0.

Therefore, there exists a non-negative martingale (Mv)v≥0 defined on some filtered probabil-
ity space such that

Cf (k, v) = E[(Mv − ek)+].

See the paper of Roper [18] for details.
Now, define a function Uf : R× [0,∞)→ (0, 1) by

Uf (k, v) = u⇔ f(F−1(u) +
√
v)

f(F−1(u))
= ek.

For instance, we have

Uφ(k, v) = Φ

(
−k√
v
−
√
v

2

)
.

Since it easy to see that the concave function u 7→ F (F−1(u) +
√
v) − uek is maximised at

u∗ = Uf (k, v) we have the alternative formula

Cf (k, v) = F (F−1(Uf (k, v)) + b)− ekUf (k, v).

In particular, we can calculate the marginal distribution of Mv to get

P(Mv ≥ ek) = Uf (k, v).

Recall that in the terminology of Hirsh, Profeta, Roynette & Yor [10], a peacock is a family
(νt)t≥0 of probability measures on R such that there is a one-dimensional martingale (Nt)t≥0
where the marginal law of Nt is νt for all t ≥ 0. Hence, the family of measures (µv)v≥0 on
R+ is a peacock, where µv is uniquely determined by

µv[K,∞) = Uf (logK, v)

for K > 0.
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