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Abstract

We construct a flexible and numerically tractable class of asset models

by firstly choosing a bivariate diffusion process (𝑈, 𝑌 ), and then defin-

ing the price of the asset at time 𝑡 to be the value of 𝑌 when 𝑈 first

exceeds 𝑡. Such price processes will typically have jumps; conventional

pricing methodologies would try to solve a PIDE, which can be numeri-

cally problematic, but using the fact that the pricing problem is embedded

in a two-dimensional diffusion, we are able to exploit efficient methods for

two-dimensional diffusion equations to find prices. Models with time de-

pendence (that is, where the bivariate diffusion is 𝑈-dependent) are no

more difficult in this approach.

Pricing a European option for a model in this class consists of solving

a linear second order elliptic PDE. This problem is amenable to highly

optimized numerical PDE solving techniques.1.

Keywords: asset price model, finite element method, partial differential

equation, jump process, inhomogeneous Markov process.
1The author is grateful to L.C.G. Rogers for his suggestions on presentation.
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1 Introduction

Figure 1.1 shows a sample path of a two-dimensional Brownian motion 𝑋 with

rightwards drift. Those points where the Brownian motion is further right than

it has been before are marked in black. These black points may be interpreted

as the sample path of a one-dimensional, jumping process 𝑍.

Z0
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Figure 1.1: A drifting Brownian motion.

Suppose 𝑍 represents the path of an asset price. Pricing a European option

on 𝑍 is a matter of computing an integral with respect to the law of 𝑍𝑇 , where

𝑇 is fixed and positive.

The value of this integral, given the starting point of 𝑋, satisfies a PDE on

the half-plane to the left of the vertical line on the right. This is a second order

elliptic PDE which may be solved numerically. In this case the homogeneity

of the diffusion leads to constant coefficients, so one could obtain an analytical

solution using the Fourier transform2.

The method we have described associates a jumping process with each rightwards-

drifting diffusion. For this class of jumping processes, the prices of European

options may be readily computed. We may also add an extra dimension to the

diffusion to represent, for example, current market conditions, or the volatility
2Of course, this is no longer possible when the diffusion is fully inhomogenous.
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of the asset price process. This allows the asset price to exhibit volatility clus-

tering effects. We consider models where the jumping process 𝑍 denotes the

discounted asset price process. In section 2, we define this class of models and

derive the pricing PDE.

Our asset price model is thus a time-changed diffusion. Unlike many exist-

ing models, here we subordinate a diffusion with a dependent increasing process.

Models generated by subordination of a process with an independent subordi-

nator are well-studied. Subordination was first considered by Bochner (1949)

and introduced into finance by Clark (1973). Many Lévy process models can be

represented as Brownian motions with an appropriate independent subordinator

(see Geman, Madan, and Yor (2001)).

The accumulated empirical evidence suggests that there are certain typical

properties of asset price processes3, which hold for different asset classes and

in different time periods. These are known as stylized facts, and a collection of

them may be found in Cont (2001). We present some of these facts and compare

the proposed models with well-known models:

1. The volatility smile. If we model the rate of return using a Brownian

motion, we obtain a lognormal model, under which the European option

price may be computed using the formula of Black, Merton and Scholes.

It became clear in the wake of the Black Monday crash of 1987 that the

lognormal models failed to allow for the heavy tails4 seen in the empirical

returns of assets. One solution is to model the log asset price instead by

a Lévy process. The normal-inverse Gaussian example of Section 3 shows

that the models presented here are able to represent this effect.

2. Volatility clustering. Volatility clustering is a name given to the autocor-

relation of the absolute value of asset returns, as is present, for example,

in the Heston model. Models where the asset price is the exponential of a
3The properties given here are with respect to the physical probability measure, rather

than an equivalent martingale measure.
4This is also known as leptokurtosis – from the Greek leptós ‘thin’ and kurtosis ‘bulging’

– or ‘the volatility smile’.
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Lévy process have independent increments and so are unable to represent

this effect5. Volatility clustering occurs for models in the class we present

if there is spatial inhomogeneity or if the model is driven by a diffusion of

dimension three or higher6.

3. The term structure of implied volatility. A reasonable model should achieve

a balance between parsimony and the correct pricing of European options.

Options traders are aware of planned events which will lead to increased

volatility, such as announcements of interest rates, inflation rates and em-

ployment rates7. The models proposed here allow the volatility of the

driving diffusion to depend on the time and asset price. Hence one may

construct a sequence of high volatility periods and to introduce level-

dependent volatility effects, as in local volatility models. The models pre-

sented here are able to represent this structure (see the time-inhomogenous

example of section 3.2).

4. Jumps in price. Jumps provide a skew to the short end of the term

structure of implied volatility which is not present in diffusion models.

5. Gain/loss asymmetry. Large drawdowns in asset prices, such as stock

market crashes, are observed more frequently than equally large upward

movements. The models presented here are able to represent this effect

by including a positive correlation between the asset price process and the

time process. See the example of section 3.1.3.

The following are desirable properties for an asset pricing model:

1. Simplicity. To price an option under the Black-Scholes model requires the

solution of a second order parabolic PDE. In the models presented here,

one solves an elliptic counterpart to that PDE. This is a classical problem

for which fast and robust numerical methods have been developed. Pricing
5Mendoza-Arriaga, Carr, and Linetsky (2010) subordinates Lévy processes to obtain volatil-

ity clustering.
6We only consider two-dimensional diffusions in this paper.
7See, for example, http://www.forexfactory.com/calendar.php.
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a similar option under a Lévy model requires the solution of a partial

integro-differential equation (PIDE), which may be more complex.

Pricing an exotic option using Monte Carlo methods is simple under the

models presented here, since it just requires the simulation of a diffusion,

rather than the direct simulation of a jumping process.

2. Robustness. This classical background of this problem in physics and

engineering has resulted in robust solution methods. One may use the

finite element method (FEM) together with modern techniques such as

higher order elements, adaptive meshing and a posteriori error estimates.

3. Speed. Fast European option pricing is important, as model calibration

may require this to be done repeatedly. For a model in this framework

based on a two-dimensional diffusion, European option pricing requires

the solution to a two-dimensional PDE on a half-plane. We show this

can be done quickly using the FEM. When the underlying diffusion is

homogeneous we may use Fourier transform methods.

Our framework includes a wide range of models, ranging from the most

parsimonious, with few parameters, to those which can match the observed

term structure of implied volatility.

One may price an American option in this framework by approximating it as

a Bermudan option and solving a corresponding sequence of European option

pricing problems. We do not consider the American option pricing problem in

this paper.

We defer most proofs to the appendix, Section 5.

2 Modelling framework

This section introduces the class of models under consideration, and develops

their use for pricing European derivatives written on discontinuous underlying

assets.
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Definition 2.1. A diffusion-generated jump process (DJGP) is a process 𝑆∗

which can be represented as

𝑆∗
𝑡 = 𝑌 (𝐻𝑡),

where

𝐻𝑡 ≡ inf{𝑠 ∶ 𝑈𝑠 > 𝑡},

and the process 𝑋𝑡 ≡ (𝑈𝑡, 𝑌𝑡) is a diffusion solving an SDE with Lipschitz

coefficients:

𝑑𝑋𝑡 = Σ(𝑋𝑡)𝑑𝑊𝑡 + 𝜇(𝑋𝑡)𝑑𝑡.

Remarks.

1. The process 𝑌 takes values in ℝ𝑑 for some 𝑑 ≥ 1. The examples discussed

will all be with 𝑑 = 1.

2. The time index of a DGJP can in principle be any real value, though we

may restrict attention to non-negative reals at times.

3. We may speak of a DGJP(𝜇, Σ) if it is necessary to make explicit the

coefficients of the SDE.

4. It will be assumed implicitly that the coefficients of the SDE are such as to

guarantee that 𝐻𝑡 < ∞ almost surely for each 𝑡. This has to be checked

in any example.

5. The principal focus of this modelling approach is on the pricing of European-

style derivatives written on underlying assets which may have jumps. In

this context, we think of 𝑆∗ as the discounted price process, and will

accordingly be looking for examples in which 𝑆∗ is a martingale. The
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transformation to the undiscounted price process is trivial in the case of

a constant interest rate 𝑟:

𝑆𝑡 ≡ 𝑒𝑟𝑡 𝑆∗
𝑡.

Lemma 2.1. Let 𝑆∗ be a DGJP(𝜇, Σ), where Σ is bounded and

𝜇(𝑥) = ⎛⎜
⎝

1
0
⎞⎟
⎠

.

Then 𝑆∗ is a martingale.

Proof. See Section 5.1 of the appendix.

Remark 2.1. Lemma 2.1 gives us a simple way of creating examples, since

we may choose any bounded volatility structure Σ which satisfies the Lipschitz

condition.

The first and simplest example will be where 𝑑 = 1 and

(2.1) Σ = ⎛⎜
⎝

0 0
0 𝜎𝑦

⎞⎟
⎠

, 𝜇(𝑥) = ⎛⎜
⎝

1
0
⎞⎟
⎠

for some 𝜎 > 0. This example falls outside the scope of Lemma 2.1, but it is

evident that the DGJP(𝜇, Σ) is the Black-Scholes discounted asset price process.

Lemma 2.2. The process (𝑋𝐻𝑡
)𝑡≥0 is Strong Markov.

Proof. This follows from the Strong Markov property of solutions to well-posed

martingale problems. See Theorem 5.4.20 of Karatzas and Shreve (1988).

2.1 Deriving the PDE for pricing European options.

In this section, we show that the price of a European option is given by the

solution to a second order elliptic PDE. Consider a European option with expiry
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𝑇 and bounded8 payoff 𝑓 . Suppose we adopt the notational conventions9 𝑢 ≡
𝑥1 ≡ 𝑒1 ⋅ 𝑥 and define

(2.2) 𝑉 (𝑥) = 𝑒−𝑟(𝑇−𝑢) 𝐸[ 𝑓(𝑒𝑟𝑇 𝑆∗
𝑇 ) ∣𝑋0 = 𝑥 ]

for 𝑥 such that 𝑒1 ⋅𝑥 ≤ 𝑇 . Now by exploiting the Markov property of the strong

solution 𝑋 to an SDE with Lipschitz coefficients, it is clear that up until the

time 𝐻𝑇 the process

(2.3)

𝑀𝑡 ≡ 𝑒−𝑟𝑈𝑡 𝑉 (𝑋𝑡) = 𝑒−𝑟𝑇 𝐸[ 𝑓(𝑒𝑟𝑇 𝑆∗
𝑇 ) ∣𝑋0 = 𝑋𝑡 ] = 𝑒−𝑟𝑇 𝐸[ 𝑓(𝑒𝑟𝑇 𝑆∗

𝑇 ) ∣ℱ𝑡 ]

is a martingale. Moreover, it is also evident that

(2.4) 𝑉 (𝑥) = 𝑓(𝑒𝑟𝑇 𝑦) if 𝑢 ≡ 𝑥1 = 𝑇 .

We intend therefore to find a function 𝑉 ∶ (−∞, 𝑇 ] × ℝ𝑑 → ℝ satisfying the

boundary condition (2.4), and such that 𝑀 defined at (2.3) is a martingale.

The tool that allows this is of course Itô’s formula.

Theorem 2.1. Suppose that 𝑆∗ is a DGJP(𝜇, Σ) which is also a martingale,

and suppose that 𝑓 ∶ ℝ𝑑 → ℝ is bounded. Suppose that 𝑟 is non-negative. Fix

some 𝑇 ∈ ℝ and let 𝑎 ≡ ΣΣ𝑇 . Suppose that 𝐹 ∶ (−∞, 𝑇 ] × ℝ𝑑 → ℝ is bounded,

satisfies the boundary condition (2.4), and the PDE

(2.5) 0 = 1
2 tr(𝑎𝐷2𝐹) + (𝜇 − 𝑟𝑎𝑒1) ⋅ 𝐷𝐹 + 𝑟𝑒1 ⋅ ( 1

2 𝑟𝑎𝑒1 − 𝜇)𝐹 .

Then 𝐹 = 𝑉 , where 𝑉 is the option price function defined at (2.2), at points

accessible to the process 𝑋.

Proof. Define, for 0 ≤ 𝑡 ≤ 𝐻𝑇 , the process 𝑁 by

𝑁𝑡 = 𝑒−𝑟𝑈𝑡𝐹(𝑋𝑡).
8The theory survives the relaxation of this assumption, provided we impose suitable tech-

nical conditions.
9We write 𝑒1 for the (𝑑 + 1)-vector with 1 in the first entry, zeros elsewhere.
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A routine application of Itō’s formula shows that d𝑁𝑡 equals, up to driftless

terms,

( 1
2 tr(𝑎𝐷2𝐹) + (𝜇 − 𝑟𝑎𝑒1) ⋅ 𝐷𝐹 + 𝑟𝑒1 ⋅ ( 1

2 𝑟𝑎𝑒1 − 𝜇)𝐹)d𝑡 = 0.

Hence 𝑁 is a continuous local martingale. Since, 𝑟 is non-negative,

𝑁𝑡 ≤ 𝑒−𝑟𝑇 𝐹(𝑈𝑡, 𝑌𝑡),

and hence 𝑁 is bounded and thus a true martingale.

𝑁𝐻𝑇
= 𝑒−𝑟𝑇 𝐹(𝑈𝐻𝑇

, 𝑌𝐻𝑇
)

= 𝑒−𝑟𝑇 𝑓(𝑌𝐻𝑇
)

= 𝑀𝐻𝑇

In particular, on the event {𝑡 ≤ 𝐻𝑇 }, 𝐹(𝑈𝑡, 𝑌𝑡) = 𝑉 (𝑈𝑡, 𝑌𝑡), so 𝐹 equals 𝑉 at

points accessible to the process 𝑋.

Remark 2.2. For the Black-Scholes example (Example (2.1)), we see that the

PDE (2.5) takes the form

0 = 1
2 𝜎2𝑦2𝐹𝑦𝑦 + 𝐹𝑢 − 𝑟𝐹.

Recalling that the variable 𝑦 is the discounted price, if we try to write the

solution in terms of the undiscounted price as 𝐹(𝑢, 𝑦) = 𝑔(𝑢, 𝑒𝑟𝑢𝑦) ≡ 𝑔(𝑢, 𝑠), a

few calculations lead to the alternative PDE

0 = 1
2 𝜎2𝑠2𝑔𝑠𝑠 + 𝑟𝑠𝑔𝑠 + 𝑔𝑢 − 𝑟𝑔,

which is of course the standard Black-Scholes PDE.

3 Examples

In this section, we give examples of DGJP models with and without 𝜇 and Σ
constant. We give three examples of constant coefficient models: the Black-

Scholes model, the normal-inverse Gaussian (NIG) model and a model with
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correlation between 𝑌 and 𝑈 . These belong to the family of exponential Lévy

models. For these models, the pricing PDE has constant coefficients, so the

price may be determined by Fourier transform methods10.

The constant coefficient models admit a quasi-closed form solution, so we

use them to gauge the accuracy of the numerical solution given by the FEM.

Finally, we give an example of a time-dependent volatility model, suitable

for short-dated options. In this model there is a single period of high volatility,

with low volatility at other times. The period of high volatility could correspond

to a volatility event, such as the release of pertinent information to the market.

3.1 Constant coefficient models

The examples studied here are DGJP(𝜇, Σ) processes of the form

𝜇 = ⎛⎜
⎝

1
0
⎞⎟
⎠

, Σ = ⎛⎜
⎝

𝜅 0
𝜏𝑦 𝜎𝑦

⎞⎟
⎠

,

where 𝜅, 𝜎 > 0, and 𝜏 ∈ ℝ. This being the case, the process 𝑋 = (𝑈, 𝑌 ) has

the form

𝑈𝑡 = 𝑡 + 𝜅𝑊𝑡,

𝑌𝑡 = 𝑌0 exp[ 𝜎𝑊 ′
𝑡 + 𝜏𝑊𝑡 − 1

2 (𝜏2 + 𝜎2)𝑡 ],

where 𝑊 and 𝑊 ′ are two independent Brownian motions. Since 𝑈 drifts up-

ward, all the hitting times 𝐻𝑡 are finite. The process 𝑌 is of course a martingale,

and by Fatou’s lemma we know that (𝑌𝐻𝑡
)𝑡≥0 is a positive supermartingale. But

we can say more.

Lemma 3.1. Assume that

(3.3) 1 + 𝜏𝜅 ≥ 0.

Then the process (𝑌𝐻𝑡
)𝑡≥0 is a positive martingale.

10Of course, this is not possible in the general case.
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Proof. With no loss of generality, we shall assume that 𝑌0 = 1. We shall prove

that 𝐸[𝑌𝐻𝑡
] = 1 for all 𝑡 ≥ 0, which is sufficient. By conditioning firstly on the

entire path of 𝑊 , we develop

𝐸[𝑌𝐻𝑡
] = 𝐸 exp[ 𝜏𝑊𝐻𝑡

− 1
2 𝜏2𝐻𝑡 ]

= 𝐸 exp[ 𝜏𝜅−1𝑈𝐻𝑡
− ( 1

2 𝜏2 + 𝜏𝜅−1)𝐻𝑡 ]

= 𝑒𝑡𝜏/𝜅𝐸 exp[ −( 1
2 𝜏2 + 𝜏𝜅−1)𝐻𝑡 ].

We see therefore that everything depends on the distribution of the first hitting

times of a drifting Brownian motion. As is well known (see, for example, O. E.

Barndorff-Nielsen (1997)), the MGF of 𝐻𝑎 is given by

(3.5) 𝐸 exp{−𝜆𝐻𝑎} = exp{ −𝑎𝜓(𝜆) }

where

𝜓(𝜆) ≡
√

1 + 2𝜆𝜅2 − 1
𝜅2 ,

valid for all 𝜆 with real part at least −1/2𝜅2. This is now applied to (3.4) with

the identification

𝜆 = 1
2 𝜏2 + 𝜏𝜅−1,

which for real 𝜏 is easily seen to be at least −1/2𝜅2, and therefore within the

range of validity of (3.5). We obtain

𝜓(𝜆) = |1 + 𝜏𝜅| − 1
𝜅2 = 𝜏/𝜅

in view of the assumption (3.3). Returning this to (3.4) gives the conclusion

𝐸[𝑌𝐻𝑡
] = 1, as required.

□

3.1.1 Black-Scholes model

In Example 2.1, we showed that we can consider the Black-Scholes model as a

DGJP model. Under this model 𝑈𝑡 = 𝑡, for 𝑡 ≥ 0. The DGJP models with this

property are local volatility models, with continuous asset price paths.
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Figure 3.1: The price of a put option with parameters 𝑇 = 1, 𝐾 = 1 and 𝑟 = 0
in a normal-inverse Gaussian model (Section 3.1.2) with parameters 𝜅 = 0.1
and 𝜎 = 0.3.

The closed-form expression for the Black-Scholes put price makes the Black-

Scholes model a test of the accuracy numerical PDE solution. Table 3.1 com-

pares the prices of European put options given by the formula with those given

by the numerical solution of (2.5), using the finite element method of Section 4.

3.1.2 Normal-inverse Gaussian model

In this subsection, we give a class of DGJP models whose stock price processes

are exponential normal-inverse Gaussian (NIG) processes. The NIG process is

a Lévy process corresponding to the NIG distribution, which was discovered by

O. Barndorff-Nielsen and Halgreen (1977). There is a closed-form expression for

the PDF of the NIG distribution in terms of a modified Bessel function of the

second kind (see O. Barndorff-Nielsen and Halgreen (1977)). By integrating the

payoff of the put option against this we are able to check the numerical accuracy

of the PDE solver. The NIG process is obtained by subordinating a Brownian
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𝑟 𝑇 𝑆0 𝐾 Analytical price ($) Computed price ($) Time (s) Basis point error

0.0000 1.0 1.0 1.0 0.119235 0.119232 0.4 -0.3012

0.0953 1.0 1.0 1.0 0.074009 0.074006 0.4 -0.4327

0.0000 2.0 1.0 1.0 0.167996 0.167993 0.4 -0.1681

0.0000 1.0 1.0 0.8 0.035344 0.035341 0.5 -0.6917

0.0000 1.0 0.8 1.0 0.235344 0.235341 0.4 -0.1043

0.0000 1.0 1.2 1.0 0.054406 0.054402 0.4 -0.5988

Table 3.1: Prices for European put options under the Black-Scholes model, with

𝜎 = 0.3 (see Remark 2.2). 𝑟 is the risk-free rate, 𝑇 is the expiry time, 𝑆0 is

the initial asset price and 𝐾 is the strike price. The analytical price is the

price given by the closed-form expression for the put price. The option price is

computed numerically using the method given in Section 4.

motion with drift by an independent Brownian motion with drift. We note that

for the NIG model, the implied volatility surface shows a skew at the short end

of the term structure of implied volatility, as is expected from a model with

jumps (see figure 3.3).

We start by defining a parameterization of the process, as given in O.

Barndorff-Nielsen and Halgreen (1977).

Definition 3.1. Fix parameters 𝛼, 𝛽 and 𝛿 in ℝ satisfying 𝛼 ≥ |𝛽| and 𝛿 > 0.

Let 𝑊 and 𝑊 ′ be independent Brownian motions. Define, for 𝑡 ≥ 0, the

stopping time

𝐻𝑡 = inf{𝑢 ≥ 0 ∶ 𝑊𝑢 + 𝛾𝑢 = 𝛿𝑡},

where

𝛾 = √𝛼2 − 𝛽2.

Define the process (𝑍𝑡)𝑡≥0, by

𝑍𝑡 = 𝑊 ′
𝐻𝑡

+ 𝛽𝐻𝑡.
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Then we say 𝑍 is the normal-inverse Gaussian (NIG) process corresponding to

parameters (𝛼, 𝛽, 𝛿).

The NIG process has stationary and independent increments and is thus a

Lévy process. In our framework, the subordinator is given by the hitting times

(𝐻𝑡)𝑡≥0, and the subordinated process is the log of the stock price.

Figure 3.2: A price path of the NIG model. The grey path is (𝑈, 𝑌 ) and the

black points correspond to the path of (𝑌𝐻𝑡
)𝑡≥0.

Remark 3.1. Consider the PDE given by (2.5) in the case of the DGJP model

of Lemma 3.1 (again writing 𝑥 = (𝑢, 𝑦)):

0 = 1
2 ((𝜎𝑦)2𝜕𝑦𝑦𝐹 + 𝜅𝜕𝑢𝑢𝐹) + (1 − 𝜅𝑟)𝜕𝑢𝐹 + 𝑟 ( 1

2 𝜅𝑟 − 1) 𝐹

As in Remark 2.2, we make the change of coordinates

𝑠 = 𝑒𝑟𝑢𝑦
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and let 𝑔 be such that 𝑔(𝑡, 𝑠) = 𝐹(𝑡, 𝑦). After some calculation, we see that 𝑔
satisfies the PDE

0 = 𝑔𝑢 − 𝑟𝑔 + 1
2 𝜎2𝑠2𝑔𝑠𝑠 + 𝑟𝑠𝑔𝑠

+ 𝜅( 1
2 𝑟2𝑠2𝑔𝑠𝑠 + 1

2 𝑔𝑢𝑢 + 𝑟𝑠𝑔𝑠𝑢 − 1
2 𝑟2𝑠𝑔𝑠 − 𝑟𝑔𝑢 + 1

2 𝑟2𝑔).

This is the Black-Scholes PDE, but with additional terms (after the first

line). In particular, for 𝜅 non-zero, this is an elliptic, rather than parabolic,

PDE. The Black-Scholes PDE is recovered as 𝜅 tends to 0.

𝑟 𝑇 𝑆0 𝐾 Analytical price ($) Computed price ($) Time (s) Basis point error

0.0000 1.0 1.0 1.0 0.117800 0.117799 0.5 -0.0491

0.0953 1.0 1.0 1.0 0.072840 0.072840 0.5 -0.0610

0.0000 2.0 1.0 1.0 0.166944 0.166943 0.8 -0.0554

0.0000 1.0 1.0 0.8 0.034904 0.034904 0.7 -0.0982

0.0000 1.0 0.8 1.0 0.234904 0.234904 0.7 -0.0145

0.0000 1.0 1.2 1.0 0.053580 0.053579 0.8 -0.0854

Table 3.2: Prices for European put options under a NIG model, with parameters

𝜅 = 0.1 and 𝜎 = 0.3. Parameters 𝑟, 𝑇 , 𝑆0 and 𝐾 are as in Table 3.1. The

analytical price is computed by direct integration of the payoff against the PDF

of the NIG distribution. The option price is computed numerically using the

finite element method (see Section 4). Note that the error is lower than for

the Black-Scholes model, potentially due to the added regularity of the elliptic

operator.
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Figure 3.3: An implied volatility surface for the NIG model with parameters

𝜅 = 0.1 and 𝜎 = 0.3, with the risk-free rate 𝑟 equal to 0. The implied volatility

was computed numerically and interpolated to form a surface. Note the skew

at the short end of the term structure.

3.1.3 Model with gain/loss asymmetry

For a model with Σ bounded, it is much easier to show that 𝑆∗ is a martingale

and thus that the model is a DGJP model (Remark 2.1). Thus in practical

applications, where the asset price may be modeled as being bounded above by

a large constant, the work done in Lemma 3.1 the previous two theorems to

show that the martingale property holds is unnecessary.
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Figure 3.4: A plot of 𝜕𝑉 /𝜕𝑆 (the delta) for the NIG model with parameters 𝜅 =
0.1 and 𝜎 = 0.3, with the risk-free 𝑟 rate equal to 0. This is the derivative of the

value function with respect to the price. This was computed by first computing

the weak solution to the pricing PDE, and then projecting the derivative onto

the finite element space 𝑆ℎ (see Section 4).
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Figure 3.5: A price path of the model with dependence between 𝑌 and 𝑈 .

The grey path is a drifting two-dimensional Brownian motion, with positive

covariance between the component processes. The black points correspond to

the generated price process. The blue and red lines respectively mark upwards

and downwards jumps of the asset price. Note that, while the asset price is a

martingale, the preponderance of large jumps are downwards, giving a gain/loss

asymmetry.
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Figure 3.6: An implied volatility surface for the model with gain/loss asymmetry

with parameters 𝜅 = 0.16, 𝜎 = 0.3 and 𝜏 = 0.1, with the risk-free 𝑟 rate equal

to 0. The implied volatility was computed numerically and interpolated to form

a surface.

𝑟 𝑇 𝑆0 𝐾 Analytical price ($) Computed price ($) Time (s) Basis point error

0.0000 1.0 1.0 1.0 0.121913 0.121913 1.2 -0.0252

0.0953 1.0 1.0 1.0 0.078620 0.078620 0.9 -0.0220

0.0000 2.0 1.0 1.0 0.173373 0.173373 0.8 -0.0236

0.0000 1.0 1.0 0.8 0.041379 0.041379 1.3 -0.0302

0.0000 1.0 0.8 1.0 0.234346 0.234346 0.4 -0.0103

0.0000 1.0 1.2 1.0 0.061327 0.061327 0.8 -0.0275

Table 3.3: Prices for European put options under the model with gain/loss

asymmetry, with parameters 𝜅 = 0.16, 𝜎 = 0.3 and 𝜏 = 0.1. Parameters 𝑟,

𝑇 , 𝑆0 and 𝐾 are as in Table 3.1. The analytical price is computed using the

method given in the appendix (see Section 5.2). The computed option price is

computed numerically (see Section 4). Note that accuracy is achieved to the

order of a hundredth of a basis point.
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3.2 Time-dependent volatility model

In this subsection, we present an example where the volatility of the two-

dimensional driving process depends on time. In this model, there is a single

period of high volatility, with low volatility at other times. This could corre-

spond, for example, to the case of a short-dated option, with a volatility event

occurring before expiry, such as the release of employment figures, or other

pertinent economic information.

Define, 𝜇(𝑢, 𝑦), for (𝑢, 𝑦) in ℝ2 by

𝜇 ⎛⎜
⎝

𝑢
𝑦

⎞⎟
⎠

= ⎛⎜
⎝

1
0

⎞⎟
⎠

.

Define, Σ(𝑢, 𝑦), for (𝑢, 𝑦) in ℝ2 by

Σ ⎛⎜
⎝

𝑢
𝑦

⎞⎟
⎠

= ⎛⎜
⎝

√𝜅(𝑢) 0
0 𝜎(𝑢)𝑦

⎞⎟
⎠

,

where

𝜎(𝑢) =
⎧{
⎨{⎩

0.8 if 𝑢 ∈ [0.5, 0.6]

0.2 otherwise,

and

𝜅(𝑢) =
⎧{
⎨{⎩

0.2 if 𝑢 ∈ [0.5, 0.6]

0 otherwise.

This gives a DGJP model (aside from the fact that Σ is not Lipschitz)11.

11For simplicity of exposition, Σ is not Lipschitz. One could smooth it to introduce this

property without changing the behaviour of the model.
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Figure 3.7: A price path under the time-dependent volatility model, showing a

short period of high volatility.

Figure 3.8: An implied volatility surface for the time-dependent volatility model.

4 Numerical solution to the pricing PDE

In this section, we solve the pricing PDE numerically using the finite element

method for the NIG model example, in the case of a European put option, with

strike 𝐾 and expiry 𝑇 . The same approach works for the general DGJP model.

For an introduction to the finite element method, see Iserles (2008). There

are three steps required to prepare our PDE for solution by the FEM: first we

change variables, second we assign boundary conditions and finally we compute

the weak form of the PDE.

Change of variables. Changing of variables to the log price will allow the
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resulting PDE to be solved efficiently on an evenly-spaced grid, as in the case

of a Black-Scholes model. To compute the price of the option, we compute an

approximation to the function ̃𝑉 and then change variables to recover 𝑉 . Define

a function 𝑉 , for (𝑢, ̃𝑦) ∈ (−∞, 𝑇 ] × ℝ by

̃𝑉 (𝑢, ̃𝑦) = 𝑉 (𝑢, 𝑒�̃�).

Define ( ̃𝑌𝑢)𝑢≥0 by

̃𝑌𝑢 = log(𝑌𝑢),

and note that, by Itō’s lemma,

d ⎛⎜
⎝

𝑈𝑡
̃𝑌𝑡

⎞⎟
⎠

= ⎛⎜
⎝

1
− 1

2 𝜎2
⎞⎟
⎠

d𝑡 + ⎛⎜
⎝

√𝜅 0
0 𝜎

⎞⎟
⎠

d𝑊𝑡.

Recall that the process given for 𝑢 ≥ 0 by

𝑒−𝑟𝑈𝑡𝑉 (𝑈𝑡, 𝑌𝑡) = 𝑒−𝑟𝑈𝑡 ̃𝑉 (𝑈𝑡, ̃𝑌𝑡)

is a martingale. By Itō’s lemma

d (𝑒−𝑟𝑈𝑡 ̃𝑉 (𝑈𝑡, ̃𝑌𝑡)) = 𝑒−𝑟𝑈𝑡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑟 ̃𝑉 (d𝑡 + √𝜅d𝑊 1
𝑡 )

+ 1
2 𝑟2 ̃𝑉 𝜅d𝑡

+ ̃𝑉�̃�(𝜎d𝑊 2
𝑡 − 1

2 𝜎2d𝑡)
+ 1

2 𝜎2 ̃𝑉�̃��̃�d𝑡
+ ̃𝑉𝑢(d𝑡 + √𝜅d𝑊 1

𝑡 )
+ 1

2 𝜅 ̃𝑉𝑢𝑢d𝑡
−𝑟𝜅 ̃𝑉𝑢d𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

so, since martingales are driftless, ̃𝑉 satisfies the PDE

0 = ( 1
2 𝜅𝑟2 − 𝑟) ̃𝑉 + ⎛⎜

⎝

1 − 𝑟𝜅
− 1

2 𝜎2
⎞⎟
⎠

⋅ ⎛⎜
⎝

̃𝑉𝑢
̃𝑉�̃�

⎞⎟
⎠

+ 1
2 𝜎2 ̃𝑉�̃��̃� + 1

2 𝜅 ̃𝑉𝑢𝑢.

Boundary conditions. To compute a solution to the PDE, we restrict its

domain from a half-plane to a finite domain. The terminal boundary condition

for 𝑉 becomes

̃𝑉 (𝑇 , 𝑦) = (𝐾 − 𝑒𝜌𝑇 𝑦)+,
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for 𝑦 in ℝ. By fixing 𝑚 < 𝑀 and stopping ̃𝑌 when it leaves the interval [𝑚, 𝑀],
we obtain the boundary conditions

̃𝑉 (𝑡, ̃𝑦) = (𝐾 − ̃𝑦)+,

when 𝑦 equals 𝑚 or 𝑀 . Finally, we impose a reflecting boundary condition:

̃𝑉�̃�(𝑡0, 𝑦) = 0,

for fixed 𝑡0 < 0 and 𝑦 ∈ [𝑚, 𝑀]. These boundary conditions provide a good

approximation when the probability that (𝑈, ̃𝑌 ) hits ([𝑡0, 𝑇 ]×𝜕[𝑚, 𝑀])∪({𝑡0}×
[𝑚, 𝑀]) is small.

Weak form of the PDE. The FEM computes an approximation to the

weak solution to the PDE. To compute the bilinear form associated with the

PDE, we integrate by parts12. Let 𝑝 be a smooth test function, zero on the

boundary of [𝑚, 𝑀] × [𝑡0, 𝑇 ]. Then

∫
𝑇

𝑡0

∫
𝑀

𝑚

⎛⎜
⎝

⎡⎢
⎣

⎛⎜
⎝

− 1
2 𝜎2

1
⎞⎟
⎠

⋅ ⎛⎜
⎝

̃𝑉�̃�
̃𝑉𝑢

⎞⎟
⎠

+ ( 1
2 𝜅𝑟2 − 𝑟) ̃𝑉 ⎤⎥

⎦
𝑝⎞⎟
⎠

( ̃𝑦, 𝑢)d ̃𝑦d𝑢

= ∫
𝑇

𝑡0

∫
𝑀

𝑚
− 1

2 ([𝜎2 ̃𝑉�̃��̃� + 𝜅 ̃𝑉𝑢𝑢] 𝑝) ( ̃𝑦, 𝑢)d ̃𝑦d𝑢

= ∫
𝑇

𝑡0

∫
𝑀

𝑚
1
2 (𝜎2 ̃𝑉�̃�𝑝�̃� + 𝜅 ̃𝑉𝑢𝑝𝑢)( ̃𝑦, 𝑢)d ̃𝑦d𝑢,

where the second equality follows from integrating by parts and the vanishing

of 𝑝 on the boundary of [𝑚, 𝑀] × [𝑡0, 𝑇 ].
The finite element space. We first create a uniform triangulation of the

rectangle [𝑡𝑜, 𝑇 ] × [𝑚, 𝑀], where 𝑇 is the expiry time of the option, 𝑚 is the

minimum value of the log stock price and 𝑀 is the corresponding maximum
12If we were computing the weak form for a DGJP model driven by a higher dimensional

diffusion, we would use Gauss’s Theorem.
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value. We used the following parameters:

𝑡0 = −1

𝑚 = −4

𝑀 = 4

For this triangulation, we use a mesh with 400 vertices in the price axis and

8 in the time axis. We denote by 𝑆ℎ the corresponding finite element space,

using cubic triangular elements. We implemented this scheme in the Python

programming language, using the FEniCS package.

5 Appendix

5.1 The martingale property of the discounted asset price

Lemma 5.1. Take 𝜇 and Σ satisfying the conditions of Lemma 2.1. For 𝑡 ≥ 0,

𝔼(𝐻𝑡) ≤ 𝑡.

Proof. Fix 𝑡 ≥ 0. Define the process (𝑀𝑠)𝑠≥0, by

𝑀𝑠 = 𝑈𝑠 − 𝑠.

Since 𝜇1 ≡ 1, 𝑀 is a local martingale. Thus, as Σ is bounded, 𝑀 is a true

martingale, with 𝑀0 = 0. Fix 𝑛 and apply the Optional Stopping Theorem to

𝑀 at the stopping time 𝐻𝑡 ∧ 𝑛. Then

0 = 𝔼[𝑈𝐻𝑡∧𝑛 − 𝐻𝑡 ∧ 𝑛],

so

𝔼[𝑡 − 𝐻𝑡 ∧ 𝑛] = 𝔼[𝑡 − 𝑈𝐻𝑡∧𝑛]

≥ 0,

thus

𝔼[𝐻𝑡 ∧ 𝑛] ≤ 𝑡,

so by Fatou’s Lemma, 𝔼[𝐻𝑡] ≤ 𝑡.
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Proof of Lemma 2.1. Since 𝜇2 ≡ 0, 𝑌 is a local martingale. Thus

(𝑌𝐻𝑡
)𝑡≥0 is a local martingale. As Σ is bounded, there is a constant 𝐾 such

that, for 𝑡 ≥ 0, [𝑌 ]𝑡 ≤ 𝐾𝑡. So, by the previous lemma,

𝔼([𝑌 ]𝐻𝑡
) ≤ 𝔼[𝐾𝐻𝑡]

≤ 𝐾𝑡

< ∞,

so (𝑌𝐻𝑡
)𝑡≥0 is a martingale, thus proving Lemma 2.1.

5.2 Analytical price in the model with gain/loss asymme-
try

We derive the law of 𝑌𝐻𝑇
for the model with gain/loss asymmetry in terms of

a NIG distribution. We follow the notation of that section.

𝐻𝑇 + √𝜅𝑊 1
𝐻𝑇

= 𝑇 ,

so

𝑌𝐻𝑇
= 𝑌0 exp [𝜏 (𝑇 − 𝐻𝑇√𝜅 ) + 𝜎𝑊 2

𝐻𝑇
− 1

2 (𝜎2 + 𝜏2)𝐻𝑇 ] ,

so, the price of a put option may be expressed as

𝔼 [(𝑒−𝑟𝑇 𝐾 − 𝑌0 exp [ 𝜏𝑇√𝜅 + 𝜎𝑍])
+

] ,

where 𝑍 has a NIG distribution with parameters13

𝛽 = −𝜎2 + 𝜏2

2𝜎 − 𝜏√𝜅𝜎
𝛾 = 1/√𝜅

𝛿 = 𝑇 /√𝜅.
13That is, has the same law as the NIG process with these parameters at time 1.
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5.3 On the boundedness of Σ in Lemma 2.1

Here we give an example showing that if the hypothesis of boundedness of Σ is

not satisfied in Lemma 2.1, the result may not pertain.

Define the processes 𝑈 and 𝑌 by

𝑑𝑈𝑢 = 𝑑𝑢 + 𝑑𝑊𝑢

𝑑𝑌𝑢 = −2𝑌𝑢𝑑𝑊𝑢.

Then 𝑌 is a martingale with

𝑌𝑢 = 𝑒−2𝑈𝑢 .

But 𝑌𝐻𝑡
= 𝑒−2𝑡, and so 𝑌𝐻𝑡

is not a true martingale, though it is a local

martingale.
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