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Abstract

We propose a continuous time infinite horizon equilibrium model of financial markets in which

arbitrageurs have multiple valuable investment opportunities but face financial constraints. The

investment opportunities, heterogeneous along different dimensions, are provided by pairs of

similar assets trading at different prices in segmented markets. By exploiting these opportuni-

ties, arbitrageurs alleviate the segmentation of markets, providing liquidity to other investors

by intermediating their trades. We characterize the arbitrageurs’ optimal investment policy,

and derive implications for market liquidity and asset prices. We show that liquidity is small-

est, volatility is largest, correlations between asset pairs with uncorrelated fundamentals are

largest, and correlations between asset pairs with highly correlated fundamentals are smallest

for intermediate levels of arbitrageur wealth.
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1 Introduction

The ongoing crisis has highlighted the importance of intermediary capital for the functioning of

financial markets. Indeed, the large losses banks incurred in the subprime market has led them to

cut their lending across the board, notably their financing of other intermediaries, causing liquidity

to dry up in many otherwise unrelated markets. Central banks the world around struggled to deal

with a combined banking liquidity and financial market liquidity crisis.

This paper develops a framework to examine the relation between intermediary capital, financial

market liquidity and asset prices. The framework itself has three main features.

First, we model arbitrageurs as specialized investors able to exploit profitable trades that other,

less sophisticated market participants cannot access directly as easily or quickly. Arbitrageurs are

to be understood here as individuals and institutions responsible for providing liquidity in different

financial markets. At the same time, arbitrage is assumed to require capital to which arbitrageurs

have only limited access, i.e., they face financial constraints. These financial constraints, be they

margin requirements, limited access to external capital or barriers to entry of new capital, affect

the arbitrageurs’ investment capacity.

Second, ours is a dynamic general equilibrium model. On the one hand, arbitrageurs’ capital

affects their ability to provide liquidity, which is ultimately reflected in asset prices. On the other

hand, asset price movements determine arbitrage profits and, therefore, arbitrageurs’ capital. This

dynamic interaction shapes arbitrageurs’ investment policies, asset prices and market liquidity.

Third, in our model, arbitrageurs face multiple arbitrage opportunities with different charac-

teristics, across which they must allocate their scarce capital. This aspect is important to study

the cross-sectional properties of arbitrageurs’ optimal investment policy, as well as those of market

liquidity and asset prices. In particular, it allows us to analyze phenomena of price contagion and

liquidity linkages across markets.

We aim to analyze a number of questions relative to arbitrageurs’ investment strategy. To

start with, what is the optimal investment strategy of an arbitrageur with financial constraints?

How is the need for risk management created by financial constraints resolved when there are

multiple arbitrage opportunities with different characteristics? How does an arbitrageur’s optimal

investment policy respond to shocks to their capital?

More importantly, we are interested in questions about asset prices and market liquidity. Fi-

nancial constraints lead to wealth effects creating price and liquidity linkages across markets. Which

asset or trade characteristics make them more sensitive to changes in arbitrageurs’ capital? How

much time-variation in convergence spreads is explained by contagion vs. fundamentals? Is diver-
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sification of arbitrageurs effective despite contagion effects?

Our model’s building block is as in Gromb and Vayanos (2002). There are two risky assets

paying similar (possibly identical) dividends but traded in segmented markets. The demand by

investors on each market for the local risky asset is affected by endowment shocks that covary with

the asset’s payoff. Since the covariances differ across the two markets, the assets’ prices can differ.

Said differently, the investors in the segmented markets would benefit from trading with each other

to improve risk sharing. However, there is no liquidity due to the assumed segmentation.

This unsatisfied demand for liquidity creates a role for arbitrageurs. We model arbitrageurs as

competitive specialists able to invest across markets and thus exploit price discrepancies between

the risky assets. Doing so, they facilitate trade between otherwise segmented investors, providing

liquidity to them. Arbitrageurs, however, face financial constraints in that their risky asset positions

must be collateralized separately with a position in the riskfree asset. Given these constraints, the

arbitrageurs’ ability to provide market liquidity depends on their wealth. The arbitrageurs’ wealth

is to be understood as the pool of capital they can access frictionlessly. In that case, there is no

distinction between arbitrageurs’ internal funds and the “smart capital” they raise externally. If

this total pool of capital is insufficient, arbitrageurs may be unable to provide perfect liquidity.

Based on that building block, we develop a continuous time general equilibrium model in

which competitive arbitrageurs face at each point in time several arbitrage opportunities, i.e.,

multiple asset pairs as above. These opportunities are heterogeneous along different dimensions

(e.g., volatility, market size, margin requirements). Due to their financial constraints, arbitrageurs

face a complex investment problem. On the one hand, they must allocate their scarce capital across

opportunities and over time. On the other hand, the performance of these investments affect their

investment capacity.

To begin with, we study the case of riskless arbitrage, in which two assets in a pair pay the

exact same dividends. In this case, we are able to derive all equilibrium variables in closed form.

This allows us to draw many implications. The following are but examples.

Some implications are cross-sectional in nature, i.e., comparing variables across opportunities

with different characteristics. For instance, we show that opportunities with higher margin require-

ments are more illiquid, offer higher excess returns and have higher risk premia. The intuition

is that investment opportunities requiring arbitrageurs to tie up more capital as collateral must

provide them with a greater reward, i.e., a higher excess return. Risk premia being the present

value of future excess returns they must be higher for such opportunities. In our model, risk premia

are a measure of the illiquidity arbitrageurs do not eliminate. Therefore, illiquidity is higher for

opportunities with higher margin requirements.
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Other implications involve comparative statics, in particular with respect to arbitrageur wealth.

One way to interpret these results is as the effect of an unanticipated exogenous shock to arbitrageur

wealth. For instance, we show that illiquidity and risk premia are more sensitive to arbitrageur

wealth for opportunities with higher margin requirements. Intuitively, changes in arbitrageur wealth

affect the excess return (current or future) per unit of collateral, and therefore impact more oppor-

tunities with higher collateral requirements.

Next, we analyze the case of risky arbitrage. There are two sources of arbitrage risk: funda-

mental risk and supply risk. Fundamental risk means that the assets in a given pair may not pay

the exact same dividends. Fundamental shocks affect arbitrage profits, and therefore arbitrageur

wealth and ultimately assets prices and liquidity. Supply risk means that the demand for liquidity

may not be predictable. Shocks to the demand for liquidity affect risk premia both directly, i.e.,

holding arbitrageur wealth constant, and indirectly because changes in premia affect arbitrageur’s

profit and therefore arbitrageur wealth.

First, we show that the arbitrageurs’ financial constraints create a linkage across otherwise

independent assets, i.e., fundamental and supply shocks to one opportunity affect all opportunities’

risk premia. The linkage goes through arbitrageur wealth. Indeed, a fundamental shock to one

opportunity affects the dividend arbitrageurs derive from that opportunity, and hence arbitrageur’s

wealth. Similarly, a supply shock to one opportunity affects that opportunity’s risk premium and

hence the capital gains arbitrageurs realize from their investment in that opportunity. In both

cases, a change in arbitrageur wealth affects all other opportunities’ risk premia.

To derive further implications, we consider the effect of small shocks, i.e., we study equilibrium

variables around the riskfree arbitrage equilibrium. We characterize the effect of different shocks

on arbitrageurs’ portfolios, market liquidity, the volatility of asset prices as well as the correlation

between the prices of different assets.

We show that liquidity, volatility and correlations are generally non-monotonic in arbitrageur

wealth. (Here an asset’s liquidity is defined as the inverse of the impact a supply shock would

have on the asset return.) If arbitrageur wealth is high, as arbitrageur wealth increases, liquidity

increases, while price volatility decreases for all assets. As for correlations, they decrease for assets

whose fundamentals are uncorrelated, and increase for assets whose fundamentals are correlated.

Maybe more surprisingly, these relationships are reversed when arbitrage wealth is low. In that

case, as arbitrageur wealth increases, liquidity decreases, while price volatility increases for all

assets. At the same time, correlations increase for assets whose fundamentals are uncorrelated, and

decrease for assets whose fundamentals are correlated.

The reason for this reversal is that for high levels of wealth, arbitrageurs are unlikely to be

constrained and therefore their positions are not very sensitive to wealth. In that case, a drop in
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wealth does not reduce much the positions arbitrageurs take and therefore does not affect much

the amount of wealth arbitrageurs put at risk. The opposite holds for low levels of wealth. In that

case, a drop in wealth leads to a large reduction in arbitrageurs’ positions, reducing the amount of

wealth arbitrageurs put at risk.

Relation to the Literature (Incomplete)

Our analysis builds on the recent literature on the limits to arbitrage and, more particularly, on

financially constrained arbitrage.1,2 Gromb and Vayanos (2002) introduce a model of arbitrageurs

providing liquidity across two segmented markets but facing collateral-based financial constraints.

Their setting is dynamic, i.e., they consider explicitly the link between arbitrageurs’ past perfor-

mance and their ability to provide market liquidity, and how arbitrageurs take this link into account

in their investment decision. They also conduct a welfare analysis. This paper extends the analysis

by considering multiple investment opportunities.3

The analysis of Gromb and Vayanos (2002) is extended to multiple investment opportunities

in a static setting by Brunnermeier and Pedersen (2009) who show how financial constraints imply

that shocks propagate and liquidity co-moves across markets. In contrast, ours is a dynamic setting.

Kyle and Xiong (2001) obtain similar financial contagion effects driven by the wealth of arbitrageurs.

These arise not from financial constraints but from arbitrageurs’ logarithmic utility implying that

their demand for risky assets is increasing in wealth.

The paper proceeds as follows. Section 2 presents the model. Sections 3 and 4 study riskless

and risky arbitrage respectively. Section 5 concludes. The Appendix contains mathematical proofs.

2 The Model

2.1 Assets

Time t is continuous and goes from zero to infinity. There is a set I of risky assets and a riskless

asset. The risky assets come in pairs, and we denote by −i the other asset in asset i’s pair. The

payoff dDi,t of asset i between time t and t+ dt is

dDi,t = Didt+ σidBi,t + σf
i dB

f
i,t, (1)

1Alternative theories of the limits to arbitrage are generally based on incentive problems in delegated portfolio
management or bounded rationality of investors.

2Here, we discuss the relation of our paper to only the closest literature. It is however connected to a broader set
of contributions which, given binding (time) constraints, we intend to discuss in future versions. Gromb and Vayanos
(2010) survey the theoretical literature on the limits of arbitrage.

3Also, the model is cast in an infinite horizon, rather than a finite horizon.
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where (Di, σi, σ
f
i ) are constants and (Bi,t, B

f
i,t) are Brownian motions. The constant Di is asset i’s

instantaneous expected payoff. The Brownian motions (Bi,t, B
f
i,t) are common to assets i and −i,

i.e., Bi,t = B−i,t and Bf
i,t = Bf

−i,t. The effect of Bi,t is the same on the two assets, i.e., σi = σ−i,

while that of Bf
i,t is opposite, i.e., σf

i = −σf
−i. Therefore, assets i and −i have identical payoffs

if σf
i = 0, and have correlated but different payoffs if σf

i ̸= 0. In both cases, we refer to the

asset pair as an arbitrage opportunity because in equilibrium arbitrageurs engage in a “spread

trade,” holding a long position in one asset and an equal short position in the other. Arbitrage

opportunity i, corresponding to the asset pair (i,−i), has fundamental risk if assets i and −i have

different payoffs (σf
i ̸= 0).

We allow for a general correlation structure between the fundamental risks of different arbitrage

opportunities, and denote by ρfi,j the instantaneous correlation between (Bf
i,t, B

f
j,t) for assets (i, j)

not in the same pair. The correlation between (Bi,t, Bj,t) does not matter for our analysis. The

correlation between (Bi,t, B
f
j,t) is also unimportant, and we set it to zero for all assets (i, j).

We assume that all risky assets are in zero net supply. This assumption simplifies our analysis

because it helps ensure that arbitrageurs hold opposite positions in two assets in a pair. We treat

the return of the riskless asset as exogenous, and denote by r the continuously compounded riskless

return. This assumption is also for simplicity and because our focus is on the price discrepancies

between risky assets. The price of asset i is endogenously determined in equilibrium, and we denote

it by pi,t.

2.2 Outside Investors

Assets can be traded by outside investors and arbitrageurs. Outside investors face market seg-

mentation and can invest only in a subset of the risky assets. For simplicity, we assume that

segmentation takes an extreme form, whereby each outside investor can only invest in one specific

risky asset and in the riskless asset.4 We refer to the outside investors who can invest in asset i as

i-investors. We take market segmentation as given, i.e., assume that i-investors face prohibitively

large transaction costs for investing in any risky asset other than asset i. These costs can be due to

unmodelled physical factors (e.g., distance), information asymmetries or institutional constraints.

We assume that i-investors are competitive and form a continuum with measure µi. They

maximize expected utility of intertemporal consumption, with utility being negative exponential,

4More generally, we can assume that outside investors can invest in multiple risky assets, provided that none of
these assets belong to the same pair.
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i.e.,

E0

[∫ ∞

0
e−aici,t−βitdt

]
. (2)

Negative exponential utility simplifies our analysis by ruling out wealth effects.

Investors i and −i are identical in terms of their measure (µi = µ−i), risk-aversion coefficient

(ai = a−i) and discount rate (βi = β−i). They differ, however, in their propensity to hold their

respective assets because of an endowment that they receive. The covariance between this endow-

ment and asset payoffs differs across investors, and this creates the different propensity to hold the

assets. Moreover, the covariance can vary over time, and this can cause time variation in the price

discrepancy between the assets.

The endowment of i-investors between time t and t + dt is ui,tdDi,t. If the coefficient ui,t is

positive, then the endowment covaries positively with the payoff of asset i, and this reduces the

i-investors’ willingness to hold the asset. If instead ui,t is negative, then the covariance is negative,

and i-investors view asset i as a valuable hedge. We refer to ui,t as the i-investors’ supply parameter:

an increase in ui,t renders i-investors more willing to supply the asset.

Investors i and −i have a different propensity to hold their respective assets if the supply

parameters (ui,t, u−i,t) differ. We assume that these parameters are opposites, i.e.,

u−i,t = −ui,t. (3)

This assumption is for simplicity: together with the zero-net-supply assumption, it ensures that

arbitrageurs hold opposite positions in two assets in a pair.

To reduce the number of cases, we assume that the supply parameter of one asset in a pair is

always positive (and hence the other is always negative). We denote by A the set of assets with

positive supply parameters, i.e., A ≡ {i ∈ I : ui,t > 0}. We assume that the supply parameter of

an asset in A follows the process

dui,t = κui (ui − ui,t)dt+ σu
i f(ui,t)dB

u
i,t, (4)

where κui > 0, ui > 0 and σu
i are constants, f(ui,t) is a function such that ui,t is always positive

(e.g., f(ui,t) =
√
ui,t), and Bu

i,t is a Brownian motion. Arbitrage opportunity i has supply risk if

ui,t is stochastic, i.e., σ
u
i ̸= 0.

We allow for a general correlation structure between the supply risks of different arbitrage

opportunities, and denote by ρui,j the instantaneous correlation between (Bu
i,t, B

u
j,t) for assets (i, j)

not in the same pair. The correlation between (Bi,t, B
u
j,t) is unimportant for our analysis, and we
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set it to zero for all assets (i, j). For simplicity, we also set the correlation between (Bf
i,t, B

u
j,t) to

zero for all (i, j).

The optimization problem Pi of an i-investor is to choose a position yi,t in asset i to maximize

(2) subject to the dynamic budget constraint

dwi,t = r(wi,t − yi,tpi,t)dt+ yi,t(dDi,t + dpi,t) + ui,tdDi,t. (5)

The first term in (5) is the return from the riskless asset, which receives dollar investment wi,t −

yi,tpi,t, the second term is the return from the risky asset, and the third term is the endowment.

2.3 Arbitrageurs

Outside investors have different propensities to hold their respective assets, but cannot realize

the potential gains from trade due to market segmentation. This unsatisfied demand for liquidity

creates a role for arbitrageurs, who can invest across markets and exploit price discrepancies between

assets. We assume that arbitrageurs are competitive and form a continuum with measure one.5

Unlike outside investors, they can invest in all risky assets and in the riskless asset. They maximize

expected utility of intertemporal consumption, with utility being logarithmic, i.e.,

E0

[∫ ∞

0
log(ct)e

−βtdt

]
. (6)

Logarithmic utility simplifies our analysis by ensuring that arbitrageurs’ consumption is a constant

fraction of their wealth regardless of the return on their opportunities, which is time-varying. The

constant fraction of wealth consumed by arbitrageurs can be interpreted not only as consumption

per se, but also as a proportional cost of running an arbitrage business.6

The optimization problem P of an arbitrageur is to choose positions {xi,t}i∈I in the risky assets

to maximize (6) subject to a dynamic budget constraint and a financial constraint. The dynamic

budget constraint is

dWt = r

(
Wt −

∑
i∈I

xi,tpi,t

)
dt+

∑
i∈I

xi,t(dDi,t + dpi,t)− ctdt, (7)

where Wt denotes the arbitrageur’s wealth. The first term in (7) is the return from the riskless

5By fixing the measure of the arbitrageurs, we rule out entry into the arbitrage industry. This seems a reasonable
assumption at least for understanding short-run market behavior.

6Logarithmic utility introduces wealth effects, in the form of wealth-dependent risk aversion. These effects are
not present in the case of riskless arbitrage (Section 3), but arbitrageur wealth still matters because of the financial
constraint (8). In the case of risky arbitrage (Section 4), the wealth effects introduced by logarithmic utility coexist
with those introduced by the financial constraint.

8



asset, which receives dollar investment Wt −
∑

i∈I xi,tpi,t, the second term is the return from the

risky assets, and the third term is consumption.

We derive a financial constraint from the requirement that arbitrageurs must post riskless

collateral to establish a position in each risky asset. We assume that a long or short position of

xi,t shares of asset i requires collateral mi|xi,t|, where mi > 0 is an exogenous margin. Since the

total collateral that an arbitrageur must post cannot exceed his wealth Wt, the arbitrageur faces

the financial constraint

Wt ≥
∑
i∈I

mi|xi,t|. (8)

To keep the model symmetric, we assume that mi = m−i.

An endogenous derivation of the margin mi can be found, for example, in Gromb and Vayanos

(2002), who show (8) in the case of one asset pair. The margin is derived from the requirement

that the position in each risky asset must be collateralized fully and separately from the positions

in other assets. The margin satisfies mi = m−i because of the symmetry of the model (zero net

supply and opposite supply parameters), and is an increasing function of asset volatility. Gromb

and Vayanos (2002) relate the assumption that arbitrageurs must collateralize their position in each

asset separately to that of market segmentation.

The financial constraint (8) limits the arbitrageurs’ investment capacity as a function of their

wealth. The arbitrageurs’ wealth is to be understood not only is their personal wealth, but also as

the pool of capital they can access frictionlessly.

Arbitrageurs in our model act as intermediaries, exploiting price discrepancies between assets

and providing liquidity to the other investors. Suppose, for example, that i-investors experience

an increase in their supply parameter, in which case −i-investors experience a decrease. Then

arbitrageurs buy asset i from i-investors and sell asset −i to investors −i. Through this transaction

arbitrageurs make a profit, while also providing liquidity to the other investors.

2.4 Equilibrium

Definition 1 A competitive equilibrium consists of prices {pi,t}i∈I , positions yi,t of the i-investors

for all i ∈ I, and positions {xi,t}i∈I of the arbitrageurs, such that:

• Given {pi,t}i∈I , yi,t solves problem Pi for all i ∈ I, and {xi,t}i∈I solve problem P.
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• The markets for all risky assets clear, i.e.,

µiyi,t + xi,t = 0 for all i ∈ I. (9)

We define the risk premium ϕi,t of asset i as the difference between the present value of the

asset’s expected payoffs and price, i.e.,

ϕi,t ≡ Et

[∫ ∞

t
e−r(s−t)dDi,s

]
− pi,t =

Di

r
− pi,t. (10)

Definition 2 A competitive equilibrium is symmetric if for each asset pair (i,−i) the risk premia

are opposites (ϕ−i,t = −ϕi,t), the arbitrageurs’ positions in the two assets are opposites (x−i,t =

−xi,t), and so are the outside investors’ positions (y−i,t = −yi,t).

In the following sections we show that a symmetric competitive equilibrium exists. Existence

follows because of our model’s symmetry. Intuitively, the risk premia of assets i and −i are opposites

because the assets are in zero net supply and the supply shocks of investors i and −i are opposites.

The arbitrageurs’ positions in the two assets are opposites because the risk premia are opposites.

The outside investors’ positions are also opposites because markets must clear. Note that symmetry

and (10) imply that asset i’s risk premium is one-half of the price wedge between assets −i and i,

i.e.,

ϕi,t =
p−i,t − pi,t

2
. (11)

We denote by

dRi,t ≡ dDi,t + dpi,t − rpi,tdt (12)

the instantaneous return per share of asset i at time t in excess of the riskless asset, and refer to it

simply as asset i’s return. Using (1) and (10), we can write this return as

dRi,t = rϕi,tdt+ σidBi,t + σf
i dB

f
i,t − dϕi,t. (13)

We refer to arbitrage opportunities by the asset i in the pair that is in A, and by arbitrageurs’

investment in an arbitrage opportunity by the investment xi,t in that asset.

3 Riskless Arbitrage

In this section we study the case where arbitrage opportunities have no fundamental risk and no

supply risk. No fundamental risk means that the assets in each pair (i,−i) have identical payoffs
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(σf
i = 0). No supply risk means that each supply parameter ui,t is deterministic (σu

i = 0). For

simplicity, we also assume that ui,t is constant over time. Eq. (4) implies that a constant ui,t must

equal to its long-run mean ui.

In the absence of fundamental and supply risk, arbitrageurs earn a riskless return from spread

trades. Indeed, no fundamental risk implies that spread trades are not affected by shocks to asset

payoffs. Moreover, no supply risk implies that there are no shocks to supply parameters than can

affect asset risk premia. Since arbitrageurs earn a riskless return, their wealth Wt is deterministic.

Hence, the arbitrageurs’ positions xi,t, the outside investors’ positions yi,t, and asset risk premia

ϕi,t are also deterministic. We confirm below that a symmetric equilibrium with deterministic

(Wt, xi,t, yi,t, ϕi,t) exists.

The case of riskless arbitrage yields non-trivial dynamics for arbitrageur wealth and asset risk

premia. Indeed, wealth increases faster when risk premia are high, but an increase in wealth triggers

a reduction in risk premia. We compute the dynamics of wealth and risk premia in closed form,

and determine how premia depend on wealth, supply parameters and margin requirements. These

results are useful not only for the analysis of riskless but also of risky arbitrage. Indeed, in Section

4 we use the closed-form solutions to derive properties of arbitrageurs’ portfolios and asset prices

when arbitrage risk is small.

3.1 Optimal Investment Policies

We first derive the optimal investment policies of outside investors and arbitrageurs. When the

risk premium ϕi,t is deterministic, it only has a drift term that we denote by νϕi,t:

dϕi,t ≡ νϕi,tdt. (14)

Eqs. (13), (14) and σf
i = 0 imply that asset i’s return is

dRi,t = Φi,tdt+ σidBi,t, (15)

where

Φi,t ≡ rϕi,t − νϕi,t, (16)

denotes the asset’s expected return.
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3.1.1 Outside Investors

Using (1), (12), (15), σf
i = 0 and ui,t = ui, we can simplify the budget constraint (5) of an i-investor

to

dwi,t = (rwi,t + yi,tΦi,t + uiDi) dt+ (yi,t + ui)σidBi,t. (17)

We conjecture that the investor’s value function is negative exponential as the expected utility, but

with a different risk-aversion coefficient, i.e.,

V (wi,t) = −e−Aiwi,t−gi,t , (18)

where gi,t is a deterministic function.

Lemma 1 The value function of an i-investor has the form (18) with Ai = rai. The investor’s

first-order condition with respect to the position yi,t in asset i is

Φi,t = Aiσ
2
i (yi,t + ui). (19)

The first-order condition (19) equates asset i’s expected return Φi,t to the marginal cost of

bearing asset i’s risk. This marginal cost is proportional to the investor’s total exposure to asset

i’s risk, which is the sum of the position yi,t and the supply parameter ui. The proportionality

coefficient is the product of the risk-aversion coefficient Ai times the variance σ2
i of asset i’s payoff.

Eq. (19) can be viewed as the i-investor’s demand function, determining the investor’s position yi,t

as a function of asset i’s expected return Φi,t.

If (19) holds for an i-investor, it also holds for an investor −i in a symmetric equilibrium.

Indeed, since the risk premia of assets i and −i are opposites, the same is true for the assets’

expected returns, i.e., Φ−i,t = −Φi,t. Therefore, if (19) holds for an i-investor, it also holds for an

investor −i if y−i,t +u−i = −(yi,t +ui). The latter condition is met because the supply parameters

ui and u−i are opposites, and so are the positions yi,t and y−i,t.

3.1.2 Arbitrageurs

Using (1), (12) and (15), and assuming that the risk premia of the assets in each pair are opposites,

we can write the budget constraint (7) of an arbitrageur as

dWt =

[
rWt +

∑
i∈A

(xi,t − x−i,t)Φi,t − ct

]
dt+

∑
i∈A

(xi,t + x−i,t)σidBi,t. (20)
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The arbitrageur’s expected return from investing in arbitrage opportunity i depends on the differ-

ence xi,t−x−i,t between his positions in assets i and −i. This is because the risk premia of the two

assets are opposites and hence the assets’ expected returns are also opposites. The arbitrageur’s

risk from investing in the same arbitrage opportunity depends instead on the sum xi,t+x−i,t of his

positions in the two assets because this determines his total exposure to the Brownian motion Bi,t

that characterizes the assets’ risk.

Eq. (20) implies, and Proposition 1 confirms, that the arbitrageur’s optimal positions in assets

i and −i are opposites. Indeed, if the positions were not opposites, the arbitrageur could modify

them by the same amount until their sum becomes zero. According to (20), the expected return

from investing in arbitrage opportunity i would not change, but the risk would become zero. Setting

x−i,t = −xi,t, we can simplify (20) to

dWt =

(
rWt + 2

∑
i∈A

xi,tΦi,t − ct

)
dt. (21)

The first term in (21) is the arbitrageur’s return from investing in the riskless asset, and the

second term is the return from investing in the arbitrage opportunities. The latter return is riskless

because the arbitrageur holds opposite positions in the assets in each pair. Hence, the arbitrageur

can achieve a riskless return superior to that available to the other investors.

The financial constraint (8) limits the arbitrageur’s ability to realize his excess return. We can

simplify (8) by noting that the arbitrageur’s spread trades involve long positions in the assets with

positive supply parameters, i.e., assets i ∈ A, because in equilibrium these assets offer positive

expected returns. Using xi,t = −x−i,t > 0 for i ∈ A, we can simplify (8) to

Wt ≥ 2
∑
i∈A

mixi,t. (22)

Proposition 1 Suppose that the risk premia of the assets in each pair are opposites. An arbitrageur

• Consumes a constant fraction β of his wealth (ct = βWt).

• Holds opposite positions in assets i ∈ A and −i, with the long position being in asset i.

• Invests only in opportunities i yielding the maximum excess return per unit of collateral (i ∈

argmaxj∈A
Φj,t

mj
) and is indifferent between any of them.

• Invests up to the financial constraint if the maximum excess return per unit of collateral is

positive (maxj∈A
Φj,t

mj
> 0).
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The intuition for the last two results of the proposition is as follows. The arbitrageur chooses

positions {xi,t}i∈I to maximize his excess return 2
∑

i∈A xi,tΦi,t subject to the financial constraint

(8). The solution to this problem is simple: the arbitrageur focuses on the opportunities yielding

the highest excess return per unit of collateral, and is indifferent between any of them. The excess

return per unit of collateral associated to opportunity i is
Φi,t

mi
: buying one share of asset i and

shorting one share of asset −i yields excess return 2Φi,t but requires collateral 2mi. If the maximum

excess return per unit of collateral is positive, then the arbitrageur’s excess return is positive. Hence,

the arbitrageur invests as much as possible, “maxing out” his financial constraint.

3.2 Equilibrium

Proposition 1 characterizes optimal investment policies given asset prices, but can be restated in

terms of the prices implied by these policies.

Corollary 1 There exists Πt ≥ 0 such that

• All opportunities i in which arbitrageurs invest (xi,t > 0) offer the same excess return Πt per

unit of collateral, i.e.,

Φi,t

mi
= Πt, (23)

while the remaining opportunities offer return lower than Πt.

• Arbitrageurs invest only in opportunities i such that

Aiσ
2
i ui

mi
> Πt. (24)

The equalization of excess return per unit of collateral across all opportunities in which arbi-

trageurs invest is a consequence of equilibrium: if returns differed, then arbitrageurs would focus

on the opportunities with the highest returns (Proposition 1), which would be a contradiction. The

common return Πt of opportunities in which arbitrageurs invest can be viewed as a threshold: arbi-

trageurs invest in opportunity i if its excess return per unit of collateral in their absence exceeds Πt.

The corresponding inequality is (24): the left-hand side is the excess return per unit of collateral

in the absence of arbitrageurs since (19) implies that when yi,t = 0, asset i’s expected return is

Φi,t = Aiσ
2
i ui. Eq. (24) implies that opportunities i in which arbitrageurs invest are associated

with low margin requirements mi and with high hedging motives by outside investors because of

high risk aversion Ai, payoff variance σ2
i , and supply parameter ui.
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An increase in the excess return Πt per unit of collateral raises the right-hand side of (24) and

can reduce the set of opportunities in which arbitrageurs invest. An increase in Πt can be triggered

by a reduction in arbitrageur wealth Wt. Indeed, when arbitrageurs are less wealthy, they are

less able to exploit price discrepancies and to offer liquidity to outside investors. Therefore, price

discrepancies are larger, and so is the return from arbitrage activity. To compute Πt as function of

Wt, we denote by N the number of elements of A, by Π̂n the n’th largest value of
Aiσ

2
i ui

mi
for i ∈ A, by

in the element of A corresponding to that value, and by An the set {im}m=1,..,n, for n ∈ {1, .., N}.

The value Π̂n represents the excess return per unit of collateral above which arbitrageurs cease to

invest in opportunity in. We also set

Bn ≡ 1

2
∑

i∈An

m2
iµi

Aiσ2
i

,

Cn ≡ 2Bn

∑
i∈An

miµiui + r − β,

Ŵn ≡ 2
∑
i∈An

miµiui −
Π̂n+1

Bn
,

for n ∈ {1, .., N}, and BN+1 ≡ 0, CN+1 ≡ r − β, Π̂N+1 ≡ 0, Ŵ0 ≡ 0 and ŴN+1 = ∞.

Proposition 2 The arbitrageurs’ excess return Πt per unit of collateral is a decreasing, convex

and piece-wise linear function of their wealth Wt.

• If Wt ≥ WN , then the financial constraint is slack and arbitrageurs earn zero excess return

(Πt = 0). They invest xi,t = µiui in opportunity i, thus eliminating the price discrepancy

between assets i and −i, and providing perfect liquidity to outside investors.

• If Wt < WN , then the financial constraint is binding and arbitrageurs earn the positive excess

return

Πt = Bn

2
∑

i∈An(Wt)

miµiui −Wt

 (25)

per unit of collateral, where n(W ) ∈ {1, .., N} is such that Ŵn(W )−1 < W ≤ Ŵn(W ). They

invest 0 ≤ xi,t < µiui in opportunity i, thus not eliminating the price discrepancy between

assets i and −i, and not providing perfect liquidity to outside investors. Their investment is

positive (xi,t > 0) only in opportunities i ∈ An.

If arbitrageurs are sufficiently wealthy, then they compete their excess return down to zero

and eliminate price discrepancies between asset pairs. Eliminating the discrepancy between assets
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i and −i requires investing xi,t = µiui in opportunity i and posting collateral 2miµiui. Therefore,

arbitrageurs can eliminate all discrepancies if their wealth Wt exceeds the total required collateral

2
∑

i∈Amiµiui = ŴN . If instead Wt < ŴN , then arbitrageurs’ excess return is positive and the

financial constraint binds. A reduction in Wt in the constrained region raises Πt.

The arbitrageurs’ excess return Πt per unit of collateral is not only decreasing in their wealth

Wt but is also convex. Indeed, a decrease in Wt has no effect on Πt = 0 in the unconstrained region

Wt ≥ ŴN , but raises Πt in the constrained region Wt < ŴN . Moreover, the increase in Πt in

the constrained region occurs at an increasing rate. This is because as Πt increases, arbitrageurs

withdraw completely from the less profitable opportunities. Therefore, their collateral is spread

across a small number of opportunities, and a reduction in their total collateral Wt causes a large

reduction in collateral allocated to each opportunity. This results in a large reduction in their

investment in each opportunity and a large increase in the opportunity’s excess return.

The relationship between the arbitrageurs’ excess return Πt and their wealth Wt goes in both

directions. At a given point in time, Πt is fully determined by Wt according to Proposition 2.

Conversely, Πt determines the dynamics of Wt: if, for example, Πt is large, arbitrageur wealth earns

a high return and grows faster. Combining Corollary 1 with the arbitrageurs’ budget constraint

(21), we find that arbitrageur wealth earns the riskless return r +Πt.

Lemma 2 Arbitrageur wealth evolves according to

dWt = (r +Πt − β)Wtdt. (26)

Determining arbitrageur wealth Wt requires solving the differential equation (26), for Πt de-

termined by Proposition 2. To rule out trivial cases, we make the following assumption

Assumption 1 Arbitrageurs’ discount factor β satisfies

r < β < r + Π̂1. (27)

If β < r, then arbitrageurs save more than they consume even when they earn the riskless

rate r on their savings. Hence, their wealth converges to infinity. If r + Π̂1 < β, then arbitrageurs

consume more than they save even when they earn the riskless rate r + Π̂1, which is the highest

possible return from arbitrage activity. Hence, their wealth converges to zero. Under Assumption 1

instead, arbitrageur wealth converges to a steady-state value W ∗ > 0. Critical for convergence, and

for the steady state’s uniqueness, is that the arbitrageurs’ return Πt is decreasing in their wealth

Wt. For example, when Wt is high, Πt is low, and hence Wt decreases (because r +Πt < β). This
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raises Πt, and eventually Wt stops decreasing and reaches its steady-state value. Conversely, when

Wt is low, Πt is high, and hence Wt increases. This lowers Πt, and eventually Wt stops increasing

and reaches its steady-state value. Thus, the dynamics of arbitrageur wealth are self-correcting.

To determine arbitrageur wealth, we define the function F (W,u, n) by

F (W,u, n) ≡ WeCnu

Bn
Cn

W [eCnu − 1] + 1
, (28)

and the times un by

Ŵn−1 ≡ F (Ŵn, un, n) (29)

for n = n(W ∗) + 1, .., N ,

Ŵn ≡ F (Ŵn−1, un, n) (30)

for n = 2, .., n(W ∗)− 1, and un ≡ ∞ for n = n(W ∗). The function (28) describes the dynamics of

arbitrageur wealth in the interval (Ŵn−1, Ŵn], where they invest in the n most profitable opportu-

nities i ∈ An. Wealth is decreasing in that interval if n ≥ n(W ∗) + 1, i.e., if the interval is above

the steady-state value W ∗, and is increasing if n ≤ n(W ∗)−1, i.e., if the interval is below W ∗. The

time un in (29) measures how long it takes for wealth to decrease from Ŵn to Ŵn−1 > W ∗, while

the time un in (30) measures how long it takes for wealth to increase from Ŵn−1 to Ŵn < W ∗.

Proposition 3 Arbitrageur wealth converges monotonically to its steady state value W ∗.

• Starting from Wt > W ∗, wealth decreases to W ∗ as follows

Wt+u = F (Wt, u, n(Wt)) for u ∈ [0, u(Wt)) where Wt+u(Wt) ≡ Ŵn(Wt)−1, (31)

W
t+u(Wt)+

∑n(Wt)−1
m=n+1 um+u

= F (Ŵn, u, n) for u ∈ [0, un), (32)

where n = n(W ∗), .., n(Wt)− 1.

• Starting from Wt < W ∗, wealth increases to W ∗ as follows

Wt+u = F (Wt, u, n(Wt)) for u ∈ [0, u(Wt)) where Wt+u(Wt) ≡ Ŵn(Wt), (33)

Wt+u(Wt)+
∑n−1

m=n(Wt)+1
um+u = F (Ŵn−1, u, n) for u ∈ [0, un), (34)

where n = n(Wt) + 1, .., n(W ∗).
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Lemma 3 Arbitrageurs’ investment in opportunity i is

xi,t = max

{
µi

(
ui −

miΠt

aiσ2
i

)
, 0

}
. (35)

In steady state, arbitrageurs earn excess return excess Π = β − r per unit of collateral, as can

be seen by setting dWt = 0 in (26). This excess return is larger if arbitrageurs are more impatient

(large β). Indeed, since arbitrageurs consume a larger fraction of wealth, they have less wealth

to use as collateral. Therefore price discrepancies are larger, and so is the return from arbitrage

activity.

We now turn to risk premia which, from (16) equal the present value of future instantaneous

expected excess returns:

ϕi,t =

∫ ∞

t
Φi,se

−r(s−t)ds. (36)

From Φi,s = miΠs = miBmax {0,Wc −Ws}, we can derive the risk premia dynamics from that of

arbitrageur wealth:

ϕi,t = miB

∫ ∞

t
max {0,Wc −Ws} e−r(s−t)ds. (37)

Proposition 4 The risk premium of asset i ∈ A at time t is

• If Wt < Wc,

ϕi,t = miB

∫ ∞

0

[
Wc −

Wte
As

B
AWt (eAs − 1) + 1

]
e−rsds. (38)

• If Wt ≥ Wc,

ϕi,t = miB

(
Wc

Wt

) r
β−r

∫ ∞

0

[
Wc −

Wce
As

B
AWc (eAs − 1) + 1

]
e−rsds. (39)

• As t increases, the risk premium ϕi,t converges monotonically towards its steady state value

ϕi = mi

(
β − r

r

)
.

Finally, we can derive the arbitrageurs’ equilibrium positions (Lemma 3).
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Proposition 5 The arbitrageurs’ position in asset i ∈ A at time t is as follows:

xi,t = µi

(
ui −

mi

aiσ2
i

Bmax {Wc −Wt; 0}
)
. (40)

3.3 Properties

Having derived all equilibrium variables in closed form, we can draw many implications. Some

of these are cross-sectional in nature, i.e., comparing variables across opportunities with different

characteristics. Others involve comparative statics with respect to arbitrageur wealth. These can

be considered in two ways. First, because arbitrageur wealth varies over time out of steady state,

the comparative statics results can be translated into time series predictions while the equilibrium

is off the steady state. Alternatively, they can be interpreted as the effect of an unanticipated

exogenous shock to arbitrageur wealth. These are also useful for the analysis of risky arbitrage.

Note that due to the model’s symmetry, optimal risk-sharing, which would result from uncon-

strained trading, would imply ϕi,t = 0.

Definition 3 The risk premium ϕi,t is a measure of the illiquidity (i, t)- and (−i, t)-investors face.

Corollary 2 The risk premia are decreasing and convex in arbitrageur wealth, i.e., for all i ∈ A

∂ϕi,t

∂Wt
< 0 and

∂2ϕi,t

∂W 2
t

> 0.

Consider a drop in arbitrageur wealth. Intuitively, the risk premia should increase because ar-

bitrageurs being poorer, they reduce their liquidity provision and allow prices to diverge. Moreover,

when arbitrageur wealth is smaller, the return on arbitrageurs’ wealth is larger and therefore a drop

in arbitrageur wealth has a larger impact on future arbitrage wealth and thus on risk premia.

Corollary 3 An asset’s risk premium is increasing in its supply, and more so the lower arbitrageur

wealth is, i.e., for all i ∈ A

∂ϕi,t

∂ui
> 0 and

∂2ϕi,t

∂ui∂Wt
< 0.

Intuitively, ϕi,t increases with ui since the discrepancy between the valuations of (i, t)- and

(−i, t)-investors is larger. There is a mitigating effect. Indeed, the higher ui, the higher the
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arbitrageurs’ return and their future wealth. This tends to reduce future excess returns, and

therefore the current risk premium. For low levels of Wt the mitigating effect is small, and therefore

ui has a large effect on ϕi,t.

Corollary 4 Illiquidity is higher for opportunities with higher margin requirements. These oppor-

tunities offer higher instantaneous excess returns and have higher risk premia, i.e., for all (i, j) ∈ A2

mi > mj ⇒ Φi,t > Φj,t and ϕi,t > ϕj,t. (41)

Intuitively, investment opportunities requiring arbitrageurs to tie up more capital as collateral

must provide them with a greater reward, i.e., a higher excess return. Risk premia being the present

value of future excess returns, they must be higher for such opportunities.

Corollary 5 Illiquidity and risk premia are more sensitive to arbitrageur wealth for opportunities

with higher margin requirements, i.e., for all (i, j) ∈ A2

mi > mj ⇒ ∂ϕi,t

∂Wt
<

∂ϕj,t

∂Wt
< 0. (42)

Intuitively, changes in arbitrageur wealth affect the excess return (current or future) per unit

of collateral, and therefore impact more strongly opportunities with higher collateral requirements.

Corollary 6 Illiquidity and risk premia are more sensitive to the supply of other assets for oppor-

tunities with higher margin requirements, i.e., for all (i, j, k) ∈ A2

mi > mj ⇒ ∂ϕi,t

∂uk
>

∂ϕj,t

∂uk
> 0

Intuitively, changes in supply affect the excess return (current or future) per unit of collateral,

and therefore impact more strongly opportunities with higher collateral requirements.

Corollary 7 Suppose Wt < Wc. Changes in arbitrageur wealth impact more strongly their position

in opportunity (i,−i) than in (j,−j) if
aiσ

2
i

miµi
<

ajσ
2
j

mjµj
.

When arbitrageurs are unconstrained (Wt > Wc), they invest xi,t = µiui in opportunity (i,−i),

independently of their wealth. Instead, when they are constrained (Wt < Wc), their wealth affect

their positions. For example, following a drop in wealth, arbitrageurs are more constrained and
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reduce their investment in all opportunities. Investment is more wealth-sensitive for opportunities

with higher collateral requirements because the excess returns that arbitrageurs require to invest in

those opportunities are more affected by wealth changes (Corollary 4). Investment is less wealth-

sensitive for opportunities where outside investors are more risk-averse or assets are riskier because

outside investors for those opportunities have a more inelastic demand for insurance.

4 Risky Arbitrage

We now consider the possibility of arbitrage risk which in our model, stems from two sources:

fundamental risk and supply risk. Fundamental risk means that assets i and −i in a pair need not

pay identical dividends, i.e., σf
i ̸= 0. We assume σf

i > 0 for i ∈ A. Supply risk means that asset

i’s supply ui,t is stochastic, i.e., σ
u
i ̸= 0. We assume σu

i > 0 for i ∈ A.7

We derive equilibrium conditions in Section 4.1, derive general properties of the equilibrium in

Section 4.2, and characterize the equilibrium more fully for small arbitrage risk in Section 4.3.

4.1 Optimal Investment Policies

As we will see, an asset’s risk premium is affected by the fundamental shocks and the supply shocks

to all assets. Hence, for i ∈ A, we denote the dynamics of the risk premium ϕi,t by

dϕi,t ≡ νϕi,tdt+
∑
j∈A

σfϕ
i,j,tdB

f
j,t +

∑
j∈A

σuϕ
i,j,tdB

u
j,t. (43)

Similarly, the instantaneous return of asset i is affected by all shocks to all assets because they

affect the asset’s risk premium. From Eqs. (13), (16) and (43), we have

dRi,t = Φi,tdt+ σidBi,t + σf
i dB

f
i,t −

∑
j∈A

σfϕ
i,j,tdB

f
j,t −

∑
j∈A

σuϕ
i,j,tdB

u
j,t. (44)

7Assuming σf
i > 0 and σu

i > 0 is without loss of generality as we can replace Bf
i,t and Bu

i,t with their opposites.
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4.1.1 Outside Investors

We first characterize the optimal investment policies of outside investors. Using (1), (10), (16) and

(43), we can write the (i, t)-investors’ dynamic budget constraint (5) as

dwi,t =
[
rwi,t + ui,t

(
Di − νϕi,t

)
+ yi,tΦi,t

]
dt

+ (yi,t + ui,t)

σidBi,t + σf
i dB

f
i,t −

∑
j∈A

σfϕ
i,j,tdB

f
j,t −

∑
j∈A

σuϕ
i,j,tdB

u
j,t

 . (45)

The drift is the same as for riskfree arbitrage. The diffusion term captures the risky part of the

return of asset i (Eq. (44)). Given this, the (i, t)-investors’ objective is

max
yi,t

[
yi,tΦi,t −

ai
2
(yi,t + ui,t)

2 (σR
i,t

)2]
. (46)

The first term is the expected excess return (i, t)-investors derive from their holding in asset i. The

second term is a cost of bearing risk. It depends on asset i’s instantaneous volatility computed as

(
σR
i,t

)2 ≡ V art(dRi,t)

dt
= σ2

i +
(
σf
i − σfϕ

i,i,t

)2
+

∑
j∈A/{i}

(
σfϕ
i,j,t

)2
+
∑
j∈A

(
σuϕ
i,j,t

)2
. (47)

At the optimum, the expected excess return of asset i to the marginal cost of risk-bearing, i.e.,

Φi,t = ai
(
σR
i,t

)2
(yi,t + ui,t) . (48)

Their first order condition determines the (i, t)-investors’ demand yi,t. By symmetry, problem P−i,t

yields the same first-order condition as Pi,t.

4.1.2 Arbitrageurs

We characterize an arbitrageur’s optimal consumption and investment policy under the restriction

that the prices of assets in the same pair are driven by symmetric processes, i.e., ϕ−i,t = −ϕi,t.

Using (1), (10), (16), (43) and symmetry, the arbitrageurs’ dynamic budget constraint (7) is

dWt =

(
rWt + 2

∑
i∈A

xi,tΦi,t − ct

)
dt+2

∑
i∈A

xi,t

σf
i dB

f
i,t −

∑
j∈A

σfϕ
i,j,tdB

f
j,t −

∑
j∈A

σuϕ
i,j,tdB

u
j,t

 . (49)

The drift is the same as for riskless arbitrage, i.e., arbitrageur wealth increases by the risk free return

plus the expected excess returns provided by all opportunities net of the arbitrageurs’ consumption.
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Now however, there are also diffusion terms because arbitrage is risky. Denote the respective

diffusion coefficients for the fundamental shock dBf
j,t and the supply shock dBu

j,t as

σfW
j,t ≡ 2xj,tσ

f
j − 2

∑
i∈A

xi,tσ
fϕ
i,j,t and σuW

j,t ≡ −2
∑
i∈A

xi,tσ
uϕ
i,j,t. (50)

A fundamental shock to opportunity (j,−j) means that assets j and −j do not pay the exact same

dividend. The “net dividend” affects arbitrageurs’ profit and hence their wealth. This direct effect

is captured by 2xj,tσ
f
j . At the same time, the shock affects all opportunities’ risk premia, and hence

the arbitrageurs’ capital gains from their investments in these opportunities. This effect is captured

by −2
∑

i∈A xi,tσ
fϕ
i,j,t. A supply shock to opportunity (j,−j) means that (j, t)- and (−j, t)-investors

are more eager to trade. Such a shock does not affect arbitrageur wealth directly but indirectly

through its effect on the risk premia of all opportunities, which in turn affects arbitrageurs’ capital

gains and ultimately their wealth. This effect is captured by −2
∑

i∈A xi,tσ
uϕ
i,j,t.

For i ∈ A, denote 2Φ̂i,t the arbitrageurs’ risk-adjusted return from opportunity (i,−i). Indeed,

their expected excess return from opportunity (i,−i), 2Φi,t, must be adjusted for the fundamental

and supply risk the opportunity entails. This is done by multiplying the arbitrageurs’ coefficient of

absolute risk aversion, equal to 1/Wt due to logarithmic utility, with the covariance of the return

of opportunity (i,−i) and that of the arbitrageurs’ portfolio, i.e.,

2Φ̂i,t ≡ 2Φi,t −
Covt(dRi,t − dR−i,t, dWt)

Wtdt
. (51)

The covariance is obtained by summing over all fundamental and supply shocks the loading of

(i,−i)’s return on each shock times the arbitrageurs’ portfolio loading on that shock, i.e.,8

Φ̂i,t = Φi,t −
1

Wt

(σf
i − σfϕ

i,i,t)σ
fW
i,t −

∑
j∈A/{i}

σfϕ
i,j,tσ

fW
j,t −

∑
j∈A

σuϕ
i,j,tσ

uW
j,t

 .

We can now derive the arbitrageurs’ optimal policy.

Proposition 6 Denote Πt ≡ maxi∈A

∣∣∣Φ̂i,t/mi

∣∣∣. Each arbitrageurs consumes a fraction β of his

wealth, i.e., ct = βWt, and his investment policy satisfies one of the following conditions.

• The financial constraint (8) is slack and Φ̂i,t = 0 for all i.

8The arbitrageurs’ logarithmic utility simplifies the analysis because risk is measured by the covariance with the
arbitrageurs’ portfolio and not with other state variables.
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• The financial constraint (8) is binding and for all i ∈ A,

xi,t > 0 ⇒ Φ̂i,t

mi
= Πt and xi,t < 0 ⇒ Φ̂i,t

mi
= −Πt. (52)

Proposition 6 is Proposition 1’s counterpart for risky arbitrage. When the financial constraint

is slack, arbitrageurs close all opportunities. When the financial constraint is binding, arbitrageurs

invest only in opportunities yielding the maximum return on collateral. There are however two

differences with Proposition 1. First, the relevant return from opportunity (i,−i) is the risk-

adjusted return Φ̂i,t, which depends both on prices and arbitrageur positions. Second, arbitrageurs

can “short” some opportunities, i.e., long the pricier asset and short the cheaper one (xi,t < 0 for

i ∈ A). This can be optimal for arbitrageurs for hedging their long positions in other opportunities.

4.2 Amplification and Contagion: Direct and Indirect Effects

Equilibrium prices and positions solve the first-order condition of outside investors (Eq. (48)) and

arbitrageurs (Proposition 6). This system of equations is complex. Here we derive general properties

of equilibrium.

Assumption 2 Define Wc,t ≡ 2
∑

i∈Amiµiui,t. We assume

0 < β − r < BWc,t and min
i∈A

aiσ
2
i ui,t
mi

> β − r.

In equilibrium, the risk premium ϕi,t is a function of arbitrageur wealth Wt and the supply

parameters {uj,t}j∈A. Eq. (49) and Ito’s Lemma imply

σfϕ
i,j,t =

∂ϕi,t

∂Wt
σfW
j,t and σuϕ

i,j,t =
∂ϕi,t

∂Wt
σuW
j,t +

∂ϕi,t

∂uj,t
σu
j . (53)

As for riskfree arbitrage, arbitrageur wealth creates a linkage between the different opportuni-

ties even though their fundamentals are independent.

Lemma 4 Fundamental and supply shocks to one opportunity affect arbitrageur wealth and the risk

premia of all opportunities. More precisely, for (i, j) ∈ A2, the effect of a fundamental shock dBf
j,t
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to opportunity (j,−j) on arbitrageur wealth and on asset i’s the risk premium ϕi,t are respectively

σfW
j,t =

2xj,tσ
f
j

1 + 2
∑

k∈A xk,t
∂ϕk,t

∂Wt

, (54)

σfϕ
i,j,t =

∂ϕi,t

∂Wt

2xj,tσ
f
j

1 + 2
∑

k∈A xk,t
∂ϕk,t

∂Wt

. (55)

The effect of the supply shock dBu
j,t on the same variables are respectively

σuW
j,t = −

2
∑

k∈A xk,t
∂ϕk,t

∂uj,t
σu
j

1 + 2
∑

k∈A xk,t
∂ϕk,t

∂Wt

, (56)

σuϕ
i,j,t =

∂ϕi,t

∂uj,t
σu
j − ∂ϕi,t

∂Wt

2
∑

k∈A xk,t
∂ϕk,t

∂uj,t
σu
j

1 + 2
∑

k∈A xk,t
∂ϕk,t

∂Wt

. (57)

To develop an intuition, assume that (as for riskless arbitrage) arbitrageurs long all opportu-

nities (xi,t > 0 for all i ∈ A), and risk premia decrease with arbitrageur wealth.

After a positive fundamental shock dBf
j,t to opportunity (j,−j), asset j’s dividend exceeds

asset −j’s, and arbitrageurs receive the “net dividend” 2xj,tσ
f
j dB

f
j,t. This direct effect on wealth

corresponds to the numerator in (54). Moreover, arbitrageurs being richer, risk premia decrease and

the arbitrageurs realize capital gains 2
∑

k∈A xk,t
∂ϕk,t

∂Wt
. This indirect effect on wealth corresponds

to the denominator in (54). Since xk,t > 0 and
∂ϕk,t

∂Wt
< 0, this indirect effect amplifies the direct

effect. The indirect effect on the risk premium ϕi,t is (55).

A positive supply shock dBu
j,t to opportunity (j,−j) means that (j, t)- and (−j, t)-investors

are more eager to trade. Holding wealth constant, such a shock has the direct effect of increasing

asset i’s risk premium by
∂ϕi,t

∂uj,t
σu
j dB

u
j,t, the first term in (57). Due to the increase in risk premia,

arbitrageurs realize a capital loss 2
∑

k∈A xk,t
∂ϕk,t

∂uj,t
σu
j . Moreover, arbitrageurs being poorer, risk

premia increase and the arbitrageurs’ loss is amplified. The indirect effect on wealth is (56) and on

the risk premium ϕi,t is the second term in Eq. (57).

4.3 Small Arbitrage Risk

In this section, we characterize the solution more fully when arbitrage risk is small (σf
i ≃ 0 and

σu
i ≃ 0), and supply parameters are slowly mean-reverting (κui ≃ 0). Specifically, we study how an
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asset’s liquidity, volatility and correlation with other assets depend on arbitrageur wealth. We also

study arbitrageurs’ positions.

4.3.1 Liquidity

Eq. (44) implies that the impact of a supply shock dBu
i,t to asset i at time t on the asset return

dRi,t is |σuϕ
i,i,t|. Hence we define asset i’s liquidity as

λi,t ≡
1

|σuϕ
i,i,t|

. (58)

All markets are less liquid than absent constraints. Indeed, arbitrageurs cannot absorb as much

of the supply shocks as they otherwise would. Since the extent to which financial constraints bind

depends on arbitrageur wealth, it is clear that liquidity should depend on arbitrageur wealth. We

show that while it does indeed, more arbitrageur wealth does not always yield more liquid markets.

Proposition 7 There exists ϵ > 0 going to zero when {σf
j , σ

u
j , κ

u
j }j∈A go to zero such that

• If Wt > Wc,t + ϵ, asset i’s liquidity λi,t increases with arbitrageur wealth Wt.

• If W ≤ Wt < Wc,t − ϵ, asset i’s liquidity λi,t decreases with arbitrageur wealth Wt.

The intuition is as follows. Supply shocks affect risk premia directly but also indirectly through

arbitrageur wealth (Lemma 4). The direct effect is weaker when arbitrageur wealth is high (Corol-

lary 3).9 The indirect effect, however, is a hump-shaped function of wealth. Indeed, at low levels

of wealth, the financial constraint is binding and an increase in wealth triggers a sharp increase in

arbitrageurs’ positions. When positions are larger, arbitrageur wealth is more sensitive to changes

in risk premia, and therefore the indirect effect is stronger. Instead, at high values of wealth,

arbitrageurs’ positions are less sensitive to wealth. The main effect of an increase in wealth is to

render risk premia less sensitive to wealth (Corollary 2), implying a weaker indirect effect. The

hump-shaped indirect effect drives the U-shaped pattern of liquidity.

4.3.2 Volatility

We next examine how arbitrageur wealth affects the volatility of assets. The volatility of asset i

is given by Eq. (47). All assets are more volatile than absent financial constraints. And again, it

9Corollary 3 is for the case σf
j = σu

j = κu
j = 0, but by continuity, the result extends to small values of (σf

j , σ
u
j , κ

u
j ).
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is intuitive that volatility should depend on arbitrageur wealth. Indeed asset i’s volatility depends

on factors affecting the asset’s dividend, σi and σf
i , but also on factors affecting the supply of and

demand for the asset, σfϕ
i,j,t and σuϕ

i,j,t. Unlike the former, the latter do depend on arbitrageur wealth,

so that asset volatilities do too. We show however that they do so in a non-trivial and generally

non-monotonic way.

Proposition 8 There exists ϵ > 0 going to zero when {σf
j , σ

u
j , κ

u
j }j∈A go to zero such that:

• If Wt > Wc,t + ϵ, asset i’s volatility σR
i,t decreases with arbitrageur wealth Wt.

• If W ≤ Wt < Wc,t − ϵ, the component of asset i’s volatility σR
i,t due to supply shocks dBu

j,t

increases in arbitrageur wealth Wt, and that due to the fundamental shock dBf
j,t, j ∈ A,

increases if

ajσ
2
juj,t

mj
≤
∑

k∈Amkµkuk,t∑
k∈A

m2
kµk

akσ
2
k

. (59)

The intuition is as follows. A supply shock to asset j ̸= i has no direct effect on asset i’s

risk premium. However, as for a supply shock to asset i itself, its indirect effect is a hump-shaped

function of wealth. Therefore, absent fundamental shocks, volatility would be hump-shaped.

The fundamental shock dBf
j,t also generates hump-shaped volatility if j satisfies condition (59).

This condition is satisfied by a non-empty subset of A, and by all assets in A if they are homogenous

(and in particular if there is only one opportunity). It is not satisfied when ajσ
2
juj,t/mj is large

relative to a weighted average of this variable across assets, and in that case the volatility due

to dBf
j,t decreases with arbitrageur wealth. The intuition is that an increase in wealth leads to

an increase in arbitrageur positions (implying larger volatility), but to a reduction in the wealth-

sensitivity of risk premia (implying smaller volatility). When uj,t is large, arbitrageurs are invested

heavily in opportunity (j,−j), and the second effect dominates because the shock dBj,t has a large

impact on wealth.10

10Condition (59) is not needed for supply shocks because the direct effect of dBf
j,t is through arbitrageurs’ position

in opportunity (j,−j), while that of dBu
j,t concerns all opportunities.
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4.3.3 Correlations

We now turn to asset correlations which again differ from the unconstrained case. First, some assets

have uncorrelated fundamentals, i.e., dividends and supply. In our model, these are assets not in the

same pair. Absent constraints or segmentation, these assets’ returns would be uncorrelated. With

constraints however they are correlated because arbitrageur wealth is a common factor affecting

all asset returns. Second, assets in the same pair have correlated fundamentals but their returns’

correlation is below that absent constraints. We show that correlations depend on arbitrageur

wealth in a non-trivial way.

Proposition 9 Consider (i, i′) ∈ A2, i ̸= i′. There exists ϵ > 0 going to zero when {σf
j , σ

u
j , κ

u
j }j∈A

go to zero such that

• If Wt > Wc,t+ ϵ, the correlation between assets i and i′ decreases with arbitrageur wealth Wt.

• If W ≤ Wt < Wc,t − ϵ, the component of the correlation between assets i and i′ due to supply

shocks dBf
j,t increases with arbitrageur wealth Wt, and that due to the fundamental shock

dBf
j,t, j ∈ A, increases if (59) is satisfied.

• The opposite holds for the correlation between assets i and −i, and for that between assets i

and −i′.

The intuition is as follows. Assume that (as for riskless arbitrage) arbitrageurs long all oppor-

tunities (xi,t > 0 for all i ∈ A), and risk premia decrease with arbitrageur wealth.

Consider first two assets i ̸= i′ that arbitrageurs long. For such assets, correlation is positive

despite their fundamentals’ independence. For high levels of wealth, as wealth increases, their cor-

relation converges to that absent constraint, i.e., zero. Things are different for low levels of wealth.

Indeed, a given increase in arbitrageur wealth translates into a larger increase in arbitrageurs’ po-

sitions, and hence in their exposure to supply shocks. Since arbitrageur wealth is a factor common

to all assets, this increases the correlation between i and i′. Hence, the correlation between i and

i′ tends to be hump-shaped or decreasing in wealth.

Consider now assets i and −i′. For such assets, correlation is negative despite their fundamen-

tals’ independence. Because fundamental and supply shocks have opposite effects on assets i′ and

−i′, the correlation between assets i and −i′ tends to be inverse U-shaped or increasing.

Finally, consider assets i and −i. These assets tend to be less correlated than absent constraints.

Because fundamental and supply shocks have opposite effects on assets i and −i, the correlation
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between assets i and −i tends to be inverse hump-shaped or increasing.

One interesting aspect of these results is that the effect of a change in arbitrageur wealth on

correlations is not uniform across asset pairs or across wealth levels. For instance, a reduction

in arbitrage capital (e.g., as during a financial crisis) does not necessary lead to an increase in

correlations across all assets, a phenomenon often viewed as contagion, and this for two distinct

reasons. First, arbitrageurs’ activity tends to bring the prices of assets with correlated fundamentals

(e.g., i and −i) in line with each other. When they are poorer, they may be able to perform that

role, and the correlation between such assets decreases. Second, for low levels of arbitrage wealth,

arbitrageurs hold small positions and this weakens the transmission of shocks through arbitrageur

wealth, reducing the correlation between assets with uncorrelated fundamentals.

4.3.4 Arbitrage Positions

We next examine how arbitrageur positions depend on their wealth and on the risk of investment

opportunities. When arbitrageurs long all opportunities (i.e., xi,t > 0 for i ∈ A), Eq. (51) and

Proposition 6 imply that for all i ∈ A, the expected excess return from opportunity (i,−i) is

Φi,t = miΠt +
Covt(dRi,t − dR−i,t, dWt)

2Wtdt
. (60)

The first term is a compensation for tying up capital as collateral. The risk-adjusted return on

collateral Πt is positive when the financial constraint binds and zero when it is slack. The second

term is a compensation for risk. It is positive because both fundamental and supply shocks induce

positive correlation between the return on opportunity (i,−i) and arbitrageur wealth. Indeed, a

positive fundamental shock dBf
j,t to j ∈ A raises arbitrageur wealth, leading to lower risk premia

and higher returns from all opportunities. A positive supply shock dBu
j,t to j ∈ A raises premia,

leading to lower arbitrageur wealth and lower returns from all opportunities.

Lemma 5 The financial constraint becomes slack at a lower level of wealth than under riskless

arbitrage. More precisely, if {σf
j , σ

u
j , κ

u
j }j∈A are small, financial constraint (8) holds as an equality

if and only if Wt ≤ Wc,t − ϵ, where ϵ > 0.

The intuition is as follows. Contrary to the riskfree arbitrage case, aggregate risk is not zero.

Hence optimal risk sharing does not involve full insurance for outside investors. Said differently,

because arbitrageurs require positive compensation for risk from each opportunity, they do not

drive expected excess returns down to zero even when they have enough wealth to do so.
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Proposition 10 For {σf
j , σ

u
j , κ

u
j }j∈A small, consider (i, i′) ∈ A2 such that (σi, ai, µi, ui,t) = (σi′ , ai′ , µi′ , ui′,t).

• If mi > mi′ and σf
i = σf

i′, changes in arbitrageur wealth impact more strongly their position

in opportunity (i,−i) than (i′,−i′).

• If mi = mi′ and σf
i > σf

i′, changes in arbitrageur wealth impact more strongly their position

in opportunity (i,−i) than (i′,−i′) when Wt > Wc,t + ϵ for ϵ > 0 that converges to zero when

{σf
j , σ

u
j , κ

u
j }j∈A go to zero.

When arbitrageurs are unconstrained, their positions are limited only by risk aversion. If

arbitrageur wealth decreases within that region, risk-aversion increases (the coefficient of absolute

risk aversion is 1/Wt) and returns become more volatile (Proposition 8). These mutually-reinforcing

effects induce arbitrageurs to scale down their positions, especially in opportunities that involve

more risk. These are the opportunities with high collateral requirements (high mi) and high

fundamental risk (high σf
i ). Note that opportunities with high collateral requirements are more

affected not because the opportunity cost of collateral increases, but because their returns are more

volatile.

Consider next the region where the financial constraint binds. Under riskless arbitrage, arbi-

trageurs scale down more their positions in opportunities with high collateral requirements (Corol-

lary 7). Under risky arbitrage, arbitrageurs are also concerned about the risk of each opportunity,

but the variation of this effect with wealth is ambiguous. On the one hand, when wealth decreases,

arbitrageurs become more risk-averse. On the other hand, return volatility can decrease (Proposi-

tion 8). As a consequence, arbitrageurs can scale down their positions less in riskier opportunities.

For small arbitrage risk, the effect of mi is unambiguous (same as under riskless arbitrage), but the

effect of σf
i is ambiguous.

5 Conclusion

This paper develops a framework to examine the relationship between intermediary capital, finan-

cial market liquidity and asset prices. Its main features are as follows. First, arbitrageurs are

sophisticated investors with better investment opportunities than other investors, but they face

financial constraints. Second, ours is a dynamic general equilibrium model capturing the dynamic

interaction between asset prices and arbitrageur capital. Third, arbitrageurs face multiple arbitrage

opportunities with different characteristics, across which they must allocate their scarce capital.
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We compute asset prices and arbitrageur positions in closed form when arbitrage is riskless.

Using these closed-form solutions, we also compute asset prices and arbitrageur positions when

arbitrage risk is small. We show that liquidity, volatility and correlations are non-monotonic in

arbitrageur wealth: liquidity is smallest, volatility is largest, correlations between asset pairs with

uncorrelated fundamentals are largest, and correlations between asset pairs with highly correlated

fundamentals are smallest for intermediate levels of arbitrageur wealth.

Our analysis has left aside a number of important questions which we intend to address in future

research. Market segmentation and financial constraints have been imposed exogenously; deriving

these from more primitive frictions is an important question. Likewise, our analysis precludes capital

flows in or out of the arbitrage industry, as well as imperfect competition between arbitrageurs.
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Appendix (Incomplete)

A Riskless Arbitrage

Proof of Proposition 1 and Corollary 1: We solve a given arbitrageur A’s problem Pt using

dynamic programming. We distinguish between arbitrageur A’s wealth Ŵt, and the arbitrageurs’

total wealth Wt. In equilibrium Ŵt = Wt, but distinguishing Ŵt from Wt is important as Wt

influences prices while arbitrageur A can affect only Ŵt. We denote {x̂i,t}i∈A arbitrageur A’s

positions and ĉt his consumption to distinguish them from the arbitrageurs’ total positions {xi,t}i∈A
and consumption ct. We conjecture the value function

V (Ŵt,Wt) =
log(Ŵt)

β
+ v(Wt). (A.1)

For riskless arbitrage, (Ŵt,Wt) are deterministic, and the Bellman equation is

max
x̂i,t,ĉt

[
log(ĉt) + VŴ

(
rŴt + 2

∑
i∈A

x̂i,tΦi,t − ĉt

)
+ VWµW

t − βV

]
= 0, (A.2)

where µW
t denotes the drift of Wt. The first-order condition with respect to ĉt yields ĉt = βŴt.

Optimizing over {x̂i,t}i∈A amounts to maximizing
∑

i∈A x̂i,tΦi,t subject to financial constraint (22).

Since Φi,t ≥ 0 for i ∈ A, the first-order condition yields the policy in the proposition. The maximum

value of 2
∑

i∈A x̂i,tΦi,t is Ŵtmaxj∈A

(
Φj,t

mj

)
. Substituting into (A.2), the terms in Ŵt cancel out.

Setting the remaining terms to zero determines the function v(Wt).

Proof of Lemma 2: From Corollary 1, ∀i ∈ I, xi,t = 0 or Φi,t = miΠt, which implies xi,tΦi,t =

xi,tmiΠt. Substituting together with ct = βWt into (21) and yields

dWt =

[
(r − β)Wt + 2Πt

∑
i∈A

mixi,t

]
dt. (A.3)

Eq. (26) follows from (22) and (A.3) by noting that when (22) is slack, Πt = 0.

For (22) to be slack, arbitrageurs must be able to hold xi,t = µiui for all i ∈ I, which requires

Wt ≥ 2
∑

i∈Amiµiui ≡ Wc. This also implies yi,t = −ui for all i ∈ I, and therefore Φi,t = 0 from

(21). xi,t > 0 for all i ∈ A and Φi,t = 0 implies Πt = 0 (Corollary 1).

If Wt < Wc, ∃i ∈ A such that xi,t < µiui, which implies yi,t > ui and Φi,t > 0 (from Eq.

(21)). This implies Πt > 0 (Corollary 1). Moreover if arbitrageurs invest in all opportunities, their
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position xi,t in each of them is given by (35). Substituting into (22) (which holds as an equality)

yields

Wt = 2
∑
i∈A

miµi

(
ui −

miΠt

aiσ2
i

)
= Wc −

Πt

B
, (A.4)

which implies (25).

Proof of Lemma 3: Eqs. (9) and (19) imply that

Φi,t = aiσ
2
i

(
ui −

xi,t
µi

)
. (A.5)

For Φi,t/mi = Πt and xi,t > 0, (A.5) implies aiσ
2
i ui/mi > Πt. Solving (A.5) for xi,t yields (35).

Proof of Proposition 3: We first determine Ws for s ≥ t such that Wt < Wc. Using (25), we

can write (26) as

dWt = (A−BWt)Wtdt. (A.6)

To integrate (A.6), we note that

d

dt

(
Wte

−At

A−BWt

)
=

Ae−At

(A−BWt)2

[
dWt

dt
− (A−BWt)Wt

]
= 0,

where the second step follows from (A.6). Therefore, for s > t,

Wse
−As

A−BWs
=

Wte
−At

A−BWt
.

Solving for Ws, we find the equations in the proposition.

Proof of Proposition 5: From Lemma 3 and Lemma 2.

Proof of Corollary 2: Eq. (38) implies that in the constrained region is

∂ϕi,t

∂Wt
= −miB

∫ ∞

0

eAs[
B
AWt (eAs − 1) + 1

]2 e−rsds. (A.7)

Eq. (39) implies that in the unconstrained region is

∂ϕi,t

∂Wt
= − rmiB

(β − r)Wt

(
Wc

Wt

) r
β−r

∫ ∞

0

[
Wc −

Wce
As

B
AWc (eAs − 1) + 1

]
e−rsds. (A.8)
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In both cases, ∂ϕi,t/∂Wt is negative and increases as Wt increases. To show strict convexity, we

also need to show that ∂ϕi,t/∂Wt is continuous at Wt = Wc. Integrating (A.7) by parts, we find

∂ϕi,t

∂Wt
=

[
mi

Wt

e−rs

B
AWt (eAs − 1) + 1

]∞
0

+
mi

Wt

∫ ∞

0

re−rs

B
AWt (eAs − 1) + 1

ds

= −mi

Wt

(
1−

∫ ∞

0

re−rs

B
AWt (eAs − 1) + 1

ds

)
, (A.9)

and therefore,

∂ϕi,t

∂Wt

∣∣∣∣
Wt=W−

c

= −mi

Wc
+

mi

Wc

∫ ∞

0

re−rs

B
AWc (eAs − 1) + 1

ds. (A.10)

Moreover, (A.8) implies that

∂ϕi,t

∂Wt

∣∣∣∣
Wt=W+

c

= −rmiB

β − r

∫ ∞

0

[
1− eAs

B
AWc (eAs − 1) + 1

]
e−rsds

= −rmiB

β − r

∫ ∞

0

[
1− A

BWc
−

1− A
BWc

B
AWc (eAs − 1) + 1

]
e−rsds. (A.11)

Using the definition of A (Eq. (27)), we find that (A.11) coincides with (A.10).

Proof of Corollary 3: The variable uj affects ϕi,t through Wc and A ≡ r − β + BWc. Since

∂Wc/∂uj is a positive constant, it suffices to show the corollary for Wc rather than uj .

To determine the sign of the cross-effect, we examine how the effect of Wt on ϕi,t depends on

Wc. Consider first the constrained region. Since A is increasing in Wc, (A.9) implies that ∂ϕi,t/∂Wt

is decreasing in Wc, i.e., ∂
2ϕi,t/∂Wc∂Wt < 0. Consider next the unconstrained region. Eq. (A.8)

implies that ∂2ϕi,t/∂Wc∂Wt < 0 if

∂

∂Wc

[
Wc −

Wce
As

B
AWc (eAs − 1) + 1

]
> 0. (A.12)

For a general value of Wt,

Wc−
Wte

As

B
AWt (eAs − 1) + 1

= Wc−
A

B
−

Wt − A
B

B
AWt (eAs − 1) + 1

=
β − r

B
−

Wt − A
B

B
AWt (eAs − 1) + 1

. (A.13)

Therefore, for Wt = Wc,

Wc −
Wce

As

B
AWc (eAs − 1) + 1

=
β − r

B
− β − r

B

1
B
AWc (eAs − 1) + 1

.
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This expression is increasing in Wc since A is increasing in Wc. Thus, in both the constrained and

unconstrained regions, ∂2ϕi,t/∂Wc∂Wt = ∂2ϕi,t/∂Wt∂Wc < 0. To conclude that the effect of Wc

on ϕi,t is more negative the larger Wt is, we also need to show that ∂ϕi,t/∂Wc is continuous at

Wt = Wc. Eq. (38) implies that in the constrained region

∂ϕi,t

∂Wc
= miB

∫ ∞

0

∂

∂Wc

[
Wc −

Wte
As

B
AWt (eAs − 1) + 1

]
e−rsds. (A.14)

Eq. (39) implies that in the unconstrained region

∂ϕi,t

∂Wc
=

rmiB

(β − r)Wc

(
Wc

Wt

) r
β−r

∫ ∞

0

[
Wc −

Wce
As

B
AWc (eAs − 1) + 1

]
e−rsds

+miB

(
Wc

Wt

) r
β−r

∫ ∞

0

∂

∂Wc

[
Wc −

Wce
As

B
AWc (eAs − 1) + 1

]
e−rsds. (A.15)

Eqs. (A.14) and (A.15) imply that

∂ϕi,t

∂Wc

∣∣∣∣
Wt=W−

c

=
∂ϕi,t

∂Wc

∣∣∣∣
Wt=W+

c

⇔ 0 =
rmiB

β − r

∫ ∞

0

[
1− eAs

B
AWc (eAs − 1) + 1

]
e−rsds−miB

∫ ∞

0

eAs[
B
AWc (eAs − 1) + 1

]2 e−rsds

⇔ ∂ϕi,t

∂Wt

∣∣∣∣
Wt=W−

c

=
∂ϕi,t

∂Wt

∣∣∣∣
Wt=W+

c

,

which holds.

We next show that ∂ϕi,t/∂Wc > 0. Eq. (A.13) implies that ∂ϕi,t/∂Wc > 0 in the constrained

region if the function

G : A −→
Wt − A

B
B
AWt (eAs − 1) + 1

is decreasing in A. Since the denominator is increasing in A, G(A) is decreasing if Wt > A/B.

Since ∂2ϕi,t/∂Wt∂Wc < 0, inequality ∂ϕi,t/∂Wc > 0 holds also if Wt < A/B. Finally, (A.12) and

(A.15) imply ∂ϕi,t/∂Wc > 0 in the unconstrained region.

Proof of Corollaries 4, 5 and 6: The first result follows from (38) and (39) by observing that

the only asset-specific term in each equation is mi. Using the same observation, we can derive the

second result from (A.7) and (A.8), and the third result from (A.14) and (A.15).

Proof of Corollary 7: Follows from Proposition 5.
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B Risky Arbitrage

Proof of Proposition 6: We proceed as in the proof of Proposition 1, conjecturing the value

function (A.1). The Bellman equation is

max
x̂i,t,ĉt

{
log(ĉt) + VŴ

(
rŴt + 2

∑
i∈A

x̂i,tΦi,t − ĉt

)

+
1

2
VŴŴ

∑
j∈A

(
x̂j,tσ

f
j −

∑
i∈A

x̂i,tσ
fϕ
i,j,t

)2

+
∑
j∈A

(∑
i∈A

x̂i,tσ
uϕ
i,j,t

)2


+VWµW
t +

1

2
VWW

∑
j∈A

(
σfW
j,t

)2
+
∑
j∈A

(
σuW
j,t

)2− βV

 = 0, (B.1)

where µW
t denotes the drift of Wt. The first-order condition with respect to ĉt yields ĉt = βŴt.

Optimization over {x̂i,t}i∈A amounts to maximizing

∑
i∈A

xi,tΦi,t −
1

2Ŵt

∑
j∈A

(
x̂j,tσ

f
j −

∑
i∈A

x̂i,tσ
fϕ
i,j,t

)2

+
∑
j∈A

(∑
i∈A

x̂i,tσ
uϕ
i,j,t

)2
 (B.2)

subject to the financial constraint (8). The first-order condition yields the policy in the proposition.

The policy {x̂i,t}i∈A and the maximum value of (B.2) are linear in Ŵt. Substituting into (B.1), the

terms in Ŵt cancel. Setting the remaining terms to zero, determines the function v(Wt).

Proof of Lemma 4: Substituting σfϕ
i,j,t from (53) into (50) and solving for σfW

j,t , we find (54).

Substituting σuϕ
i,j,t from (53) into (50) and solving for σuW

j,t , we find (57).

Proof of Proposition 7: When {σf
j , σ

u
j , κ

u
j }j∈A are small, the highest-order term in (57) is

σuϕ0
i,j,t ≡ −

∂ϕ0
i,t

∂Wt

2
∑

k∈A x0k,t
∂ϕ0

k,t

∂uj,t
σu
j

1 + 2
∑

k∈A x0k,t
∂ϕ0

k,t

∂Wt

+
∂ϕ0

i,t

∂uj,t
σu
j , (B.3)

where (ϕ0
k,t, x

0
k,t) denote the functions (ϕk,t, xk,t) evaluated under riskless arbitrage at the point

(Wt, {uk,t}k∈A). The proposition will follow if we show that σuϕ0
i,j,t is positive, decreasing in Wt for

Wt > Wc,t, and increasing in Wt for A/B ≤ Wt < Wc.

37



When Wt > Wc,t, x
0
k,t = µkuk,t, and the denominator in (B.3) is equal to

1 + 2
∑
k∈A

µkuk,t
∂ϕ0

k,t

∂Wt
= 1 +

2
∑

k∈Amkµkuk,t

Wt

(
−1 +

∫ ∞

0

re−rs

B
AWt (eAs − 1) + 1

ds

)

= 1− Wc,t

Wt
+

Wc,t

Wt

∫ ∞

0

re−rs

B
AWt (eAs − 1) + 1

ds > 0, (B.4)

where the first step follows from (A.9), and the second from A ≡ BWc,t− (β − r) > 0. The variable

σuϕ0
i,j,t is positive and decreasing in Wt because (B.4) is positive,

∂ϕ0
k,t

∂uj,t
is positive and decreasing in

Wt (Corollary 3), and
∂ϕ0

k,t

∂Wt
is negative and increasing in Wt (Corollary 2).

When Wt < Wc,t, (A.9) implies that

∂ϕ0
i,t

∂Wt
= −mi

Wt
+

mi

Wt

∫ ∞

0

re−rs

B
AWt (eAs − 1) + 1

ds, (B.5)

and (A.13) and (A.14) imply that

∂ϕ0
i,t

∂uj,t
= −mimjµjB

∫ ∞

0

∂

∂Wc,t

[
Wt − A

B
B
AWt (eAs − 1) + 1

]
e−rsds. (B.6)

Moreover, since {x0k,t}k∈A satisfy the financial constraint (22), (A.9) implies that

1 + 2
∑
k∈A

x0k,t
∂ϕ0

k,t

∂Wt
= 1 +

2
∑

k∈Amkx
0
k,t

Wt

(
−1 +

∫ ∞

0

re−rs

B
AWt (eAs − 1) + 1

ds

)

=

∫ ∞

0

re−rs

B
AWt (eAs − 1) + 1

ds, (B.7)

and (A.13) and (A.14) imply that

2
∑
k∈A

x0k,t
∂ϕ0

k,t

∂uj,t
=

(
2
∑
k∈A

mkx
0
k,t

)
mjµjB

∫ ∞

0

∂

∂Wc,t

[
Wc,t −

Wte
As

B
AWt (eAs − 1) + 1

]
e−rsds.

= −WtmjµjB

∫ ∞

0

∂

∂Wc,t

[
Wt − A

B
B
AWt (eAs − 1) + 1

]
e−rsds. (B.8)

Substituting (B.5)-(B.8) into (B.3), we find

σuϕ0
i,j,t = −mimjµjBσu

j

∫∞
0

∂
∂Wc,t

[
Wt−A

B
B
A
Wt(eAs−1)+1

]
e−rsds∫∞

0
re−rs

B
A
Wt(eAs−1)+1

ds

= mimjµjBσu
j


1

r
+

∫∞
0

(Wt−A
B )

B
A2Wt(AseAs−eAs+1)

[BAWt(eAs−1)+1]
2 e−rsds∫∞

0
re−rs

B
A
Wt(eAs−1)+1

ds

 , (B.9)
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where the second step follows from A ≡ r − β +BWc,t. Since the function

Wt −→
(
Wt − A

B

)
B
A2Wt

(
AseAs − eAs + 1

)[
B
AWt (eAs − 1) + 1

]2
is positive for Wt > A/B and increasing in Wt for Wt > A/(2B), and the function

Wt −→
∫ ∞

0

re−rs

B
AWt (eAs − 1) + 1

ds

is positive and decreasing in Wt, σ
uϕ0
i,j,t is positive and increasing in Wt for A/B ≤ Wt < Wc.

Proof of Proposition 8: The loading σfϕ
i,j,t for (i, j) ∈ A is given by (55). When {σf

j , σ
u
j , κ

u
j }j∈A

are small, the highest-order term in (55) is

σfϕ0
i,j,t ≡

∂ϕ0
i,t

∂Wt

2x0j,tσ
f
j

1 + 2
∑

k∈A x0k,t
∂ϕ0

k,t

∂Wt

. (B.10)

The proposition will follow from (47) and the properties of σuϕ0
i,j,t shown in the proof of Proposition

7, if we show that σfϕ0
i,j,t is negative, increasing in Wt for Wt > Wc,t, and decreasing in Wt for

Wt < Wc,t and j satisfying (59).

When Wt > Wc,t, x
0
k,t = µkuk,t and the denominator in (B.10) is equal to (B.4). Since σf

j , x
0
k,t,

and (B.4) are positive, and
∂ϕ0

k,t

∂Wt
is negative and increasing in Wt, σ

fϕ0
i,j,t is negative and increasing

in Wt. When Wt < Wc,t,

x0j,t = µj

(
uj,t −

mjΠ
0
t

ajσ2
j

)
= µj

[
uj,t −

mjB(Wc,t −Wt)

ajσ2
j

]
, (B.11)

where the first step follows from (35) and the second from (25). Substituting (B.5), (B.7) and

(B.11) into (B.10), we find

σfϕ0
i,j,t = −2miµjσ

f
j

uj,t − mjBWc,t

ajσ2
j

Wt
+

mjB

ajσ2
j

 1∫∞
0

re−rs

B
A
Wt(eAs−1)+1

ds
− 1

 . (B.12)

The first square bracket is positive since x0j,t > 0, and increases with Wt for j satisfying (59). Since

the second square bracket is positive and increasing in Wt, σ
fϕ0
i,j,t is negative and decreasing in Wt.
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Proof of Proposition 9: The correlation between assets (i, i′) ∈ A2 is

ρi,i′,t ≡

(
σfϕ
i,i,t − σf

i

)
σfϕ
i′,i,t + σfϕ

i,i′,t

(
σfϕ
i′,i′,t − σf

i′

)
+
∑

j∈A/{i,i′} σ
fϕ
i,j,tσ

fϕ
i′,j,t +

∑
j∈A σuϕ

i,j,tσ
uϕ
i′,j,t

σR
i,tσ

R
i′,t

. (B.13)

When {σf
j , σ

u
j , κ

u
j }j∈A are small, the highest-order term in (B.13) is

(
σfϕ0
i,i,t − σf

i

)
σfϕ0
i′,i,t + σfϕ0

i,i′,t

(
σfϕ0
i′,i′,t − σf

i′

)
+
∑

j∈A/{i,i′} σ
fϕ0
i,j,tσ

fϕ0
i′,j,t +

∑
j∈A σuϕ0

i,j,tσ
uϕ0
i′,j,t

σiσi′
. (B.14)

The properties of ρi,i′,t follow from (B.14) and the properties of (σuϕ0
i,j,t , σ

fϕ0
i,j,t) shown in the proofs of

Propositions 7 and 8. The properties of ρi,−i′,t follow from ρi,−i′,t = −ρi,i′,t, which is implied from

symmetry. To show the properties of ρi,−i,t, we note that symmetry implies that

ρi,−i,t =
σ2
i −

(
σf
i − σfϕ

i,i,t

)2
−
∑

j∈A/{i}

(
σfϕ
i,j,t

)2
−
∑

j∈A

(
σuϕ
i,j,t

)2
(
σR
i,t

)2 .

When {σf
j , σ

u
j , κ

u
j }j∈A are small, ρi,−i,t is close to one. Using (47), we find that the highest-order

term in 1− ρi,−i,t is

2

[(
σf
i − σfϕ0

i,i,t

)2
+
∑

j∈A/{i}

(
σfϕ0
i,j,t

)2
+
∑

j∈A

(
σuϕ0
i,j,t

)2]
σ2
i

. (B.15)

The comparative statics of (B.15) are the same as for (B.14). Therefore, the properties of ρi,−i,t

are opposite to those of ρi,i′,t.

Proof of Lemma 5: When {σf
j , σ

u
j , κ

u
j }j∈A are small, arbitrageurs long all opportunities and their

first-order condition is (60). Combining with (48) and using (51), we find

xi,t = µi

ui,t − Ψi,t +miΠt

ai

(
σR
i,t

)2
 , (B.16)

where

Ψi,t ≡
1

Wt

(σf
i − σfϕ

i,i,t)σ
fW
i,t −

∑
j∈A/{i}

σfϕ
i,j,tσ

fW
j,t −

∑
j∈A

σuϕ
i,j,tσ

uW
j,t

 .
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Multiplying (B.16) by mi and summing over i ∈ A, we find that the financial constraint (8) holds

as an equality if and only if

Wt = Wc,t − 2
∑
i∈A

miµi (Ψi,t +miΠt)

ai

(
σR
i,t

)2 . (B.17)

For small {σf
j , σ

u
j , κ

u
j }j∈A, the highest-order term in Ψi,t is

Ψ0
i,t ≡

1

Wt

(σf
i − σfϕ0

i,i,t )σ
fW0
i,t −

∑
j∈A/{i}

σfϕ0
i,j,tσ

fW0
j,t −

∑
j∈A

σuϕ0
i,j,tσ

uW0
j,t

 , (B.18)

where

σfW0
j,t ≡

2x0j,tσ
f
j

1 + 2
∑

i∈A x0k,t
∂ϕ0

k,t

∂Wt

and σuW0
j,t ≡ −

2
∑

k∈A x0k,t
∂ϕ0

k,t

∂uj,t
σu
j

1 + 2
∑

k∈A x0k,t
∂ϕ0

k,t

∂Wt

(B.19)

are the highest-order terms in (σfW
j,t , σuW

j,t ), respectively. Since σfϕ0
i,j,t < 0, σuϕ0

i,j,t > 0, σfW0
j,t > 0 and

σuW0
j,t < 0, Ψ0

i,t > 0. Lemma 5 follows from (B.17), Πt ≥ 0 and Ψ0
i,t > 0.

Proof of Proposition 10: In the region where arbitrageurs are unconstrained, Πt = 0. Eq. (B.16)

implies that when {σf
j , σ

u
j , κ

u
j }j∈A are small, the two highest-order terms in xi,t are

x1i,t ≡ µi

(
ui,t −

Ψ0
i,t

aiσ2
i

)
. (B.20)

Since σfϕ0
i,j,t and σuW0

j,t are negative and increasing in Wt, and σuϕ0
i,j,t and σfW0

j,t are positive and

decreasing in Wt, (B.18) implies that Ψ0
i,t is decreasing in Wt, and therefore, x1i,t is increasing. Eq.

(B.20) implies that

x1i,t − x1i′,t =
µ

aσ2

(
Ψ0

i′,t −Ψ0
i,t

)
, (B.21)

where (σ, a, µ, ut) ≡ (σi, ai, µi, ui,t) = (σi′ , ai′ , µi′ , ui′,t). Noting that ϕ0
i,t/mi = ϕ0

i′,t/mi′ and x0i,t =

µiui,t, and using (B.3), (B.10), (B.18), (B.19) and (B.21), we find

x1i,t−x1i′,t =
µ

aσ2Wt


2µut

[(
σf
i′

)2
−
(
σf
i

)2]
1 + 2

∑
i∈A µuk,t

∂ϕ0
k,t

∂Wt

+

(
1− mi′

mi

)∑
j∈A

σfϕ0
i,j,tσ

fW0
j,t +

∑
j∈A

σuϕ0
i,j,tσ

uW0
j,t


 .

(B.22)
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If mi > mi′ and σf
i = σf

i′ , the first term in the curly bracket is zero. Since the second term is

negative and increasing in Wt, x
1
i,t − x1i′,t is increasing in Wt. If mi = mi′ and σf

i > σf
i′ , the second

term in the curly bracket is zero. Since the first term is negative and increasing in Wt, x
1
i,t − x1i′,t

is increasing in Wt. In both cases, ∂x1i,t/∂Wt > ∂x1i′,t/∂Wt > 0, i.e., changes in arbitrageur wealth

impact more strongly their position in opportunity (i,−i) than (i′,−i′).

In the region where arbitrageurs are constrained, Πt > 0. Eq. (B.16) implies that when

{σf
j , σ

u
j , κ

u
j }j∈A are small, the two highest-order terms in xi,t are

x1i,t = µi

ui,t −
Ψi,t +miΠt

aiσ2
i

1 +
(
σR
i,t

)2
− σ2

i

σ2
i


 . (B.23)

The comparative statics with respect to mi follow by considering the highest-order term

x0i,t = µi

(
ui,t −

miΠt

aiσ2
i

)
,

i.e., as in the case of riskless arbitrage. (The ambiguous comparative statics with respect to σf
i

follow by considering the term in the next order.)
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