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Abstract

We propose a continuous time infinite horizon equilibrium model of financial markets in which
arbitrageurs have multiple valuable investment opportunities but face financial constraints. The
investment opportunities, heterogeneous along different dimensions, are provided by pairs of
similar assets trading at different prices in segmented markets. By exploiting these opportuni-
ties, arbitrageurs alleviate the segmentation of markets, providing liquidity to other investors
by intermediating their trades. We characterize the arbitrageurs’ optimal investment policy,
and derive implications for market liquidity and asset prices. We show that liquidity is small-
est, volatility is largest, correlations between asset pairs with uncorrelated fundamentals are
largest, and correlations between asset pairs with highly correlated fundamentals are smallest

for intermediate levels of arbitrageur wealth.
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1 Introduction

The ongoing crisis has highlighted the importance of intermediary capital for the functioning of
financial markets. Indeed, the large losses banks incurred in the subprime market has led them to
cut their lending across the board, notably their financing of other intermediaries, causing liquidity
to dry up in many otherwise unrelated markets. Central banks the world around struggled to deal

with a combined banking liquidity and financial market liquidity crisis.

This paper develops a framework to examine the relation between intermediary capital, financial

market liquidity and asset prices. The framework itself has three main features.

First, we model arbitrageurs as specialized investors able to exploit profitable trades that other,
less sophisticated market participants cannot access directly as easily or quickly. Arbitrageurs are
to be understood here as individuals and institutions responsible for providing liquidity in different
financial markets. At the same time, arbitrage is assumed to require capital to which arbitrageurs
have only limited access, i.e., they face financial constraints. These financial constraints, be they
margin requirements, limited access to external capital or barriers to entry of new capital, affect

the arbitrageurs’ investment capacity.

Second, ours is a dynamic general equilibrium model. On the one hand, arbitrageurs’ capital
affects their ability to provide liquidity, which is ultimately reflected in asset prices. On the other
hand, asset price movements determine arbitrage profits and, therefore, arbitrageurs’ capital. This

dynamic interaction shapes arbitrageurs’ investment policies, asset prices and market liquidity.

Third, in our model, arbitrageurs face multiple arbitrage opportunities with different charac-
teristics, across which they must allocate their scarce capital. This aspect is important to study
the cross-sectional properties of arbitrageurs’ optimal investment policy, as well as those of market
liquidity and asset prices. In particular, it allows us to analyze phenomena of price contagion and

liquidity linkages across markets.

We aim to analyze a number of questions relative to arbitrageurs’ investment strategy. To
start with, what is the optimal investment strategy of an arbitrageur with financial constraints?
How is the need for risk management created by financial constraints resolved when there are
multiple arbitrage opportunities with different characteristics? How does an arbitrageur’s optimal

investment policy respond to shocks to their capital?

More importantly, we are interested in questions about asset prices and market liquidity. Fi-
nancial constraints lead to wealth effects creating price and liquidity linkages across markets. Which
asset or trade characteristics make them more sensitive to changes in arbitrageurs’ capital? How

much time-variation in convergence spreads is explained by contagion vs. fundamentals? Is diver-



sification of arbitrageurs effective despite contagion effects?

Our model’s building block is as in Gromb and Vayanos (2002). There are two risky assets
paying similar (possibly identical) dividends but traded in segmented markets. The demand by
investors on each market for the local risky asset is affected by endowment shocks that covary with
the asset’s payoff. Since the covariances differ across the two markets, the assets’ prices can differ.
Said differently, the investors in the segmented markets would benefit from trading with each other

to improve risk sharing. However, there is no liquidity due to the assumed segmentation.

This unsatisfied demand for liquidity creates a role for arbitrageurs. We model arbitrageurs as
competitive specialists able to invest across markets and thus exploit price discrepancies between
the risky assets. Doing so, they facilitate trade between otherwise segmented investors, providing
liquidity to them. Arbitrageurs, however, face financial constraints in that their risky asset positions
must be collateralized separately with a position in the riskfree asset. Given these constraints, the
arbitrageurs’ ability to provide market liquidity depends on their wealth. The arbitrageurs’ wealth
is to be understood as the pool of capital they can access frictionlessly. In that case, there is no
distinction between arbitrageurs’ internal funds and the “smart capital” they raise externally. If

this total pool of capital is insufficient, arbitrageurs may be unable to provide perfect liquidity.

Based on that building block, we develop a continuous time general equilibrium model in
which competitive arbitrageurs face at each point in time several arbitrage opportunities, i.e.,
multiple asset pairs as above. These opportunities are heterogeneous along different dimensions
(e.g., volatility, market size, margin requirements). Due to their financial constraints, arbitrageurs
face a complex investment problem. On the one hand, they must allocate their scarce capital across
opportunities and over time. On the other hand, the performance of these investments affect their

investment capacity.

To begin with, we study the case of riskless arbitrage, in which two assets in a pair pay the
exact same dividends. In this case, we are able to derive all equilibrium variables in closed form.

This allows us to draw many implications. The following are but examples.

Some implications are cross-sectional in nature, i.e., comparing variables across opportunities
with different characteristics. For instance, we show that opportunities with higher margin require-
ments are more illiquid, offer higher excess returns and have higher risk premia. The intuition
is that investment opportunities requiring arbitrageurs to tie up more capital as collateral must
provide them with a greater reward, i.e., a higher excess return. Risk premia being the present
value of future excess returns they must be higher for such opportunities. In our model, risk premia
are a measure of the illiquidity arbitrageurs do not eliminate. Therefore, illiquidity is higher for

opportunities with higher margin requirements.



Other implications involve comparative statics, in particular with respect to arbitrageur wealth.
One way to interpret these results is as the effect of an unanticipated exogenous shock to arbitrageur
wealth. For instance, we show that illiquidity and risk premia are more sensitive to arbitrageur
wealth for opportunities with higher margin requirements. Intuitively, changes in arbitrageur wealth
affect the excess return (current or future) per unit of collateral, and therefore impact more oppor-

tunities with higher collateral requirements.

Next, we analyze the case of risky arbitrage. There are two sources of arbitrage risk: funda-
mental risk and supply risk. Fundamental risk means that the assets in a given pair may not pay
the exact same dividends. Fundamental shocks affect arbitrage profits, and therefore arbitrageur
wealth and ultimately assets prices and liquidity. Supply risk means that the demand for liquidity
may not be predictable. Shocks to the demand for liquidity affect risk premia both directly, i.e.,
holding arbitrageur wealth constant, and indirectly because changes in premia affect arbitrageur’s

profit and therefore arbitrageur wealth.

First, we show that the arbitrageurs’ financial constraints create a linkage across otherwise
independent assets, i.e., fundamental and supply shocks to one opportunity affect all opportunities’
risk premia. The linkage goes through arbitrageur wealth. Indeed, a fundamental shock to one
opportunity affects the dividend arbitrageurs derive from that opportunity, and hence arbitrageur’s
wealth. Similarly, a supply shock to one opportunity affects that opportunity’s risk premium and
hence the capital gains arbitrageurs realize from their investment in that opportunity. In both

cases, a change in arbitrageur wealth affects all other opportunities’ risk premia.

To derive further implications, we consider the effect of small shocks, i.e., we study equilibrium
variables around the riskfree arbitrage equilibrium. We characterize the effect of different shocks
on arbitrageurs’ portfolios, market liquidity, the volatility of asset prices as well as the correlation

between the prices of different assets.

We show that liquidity, volatility and correlations are generally non-monotonic in arbitrageur
wealth. (Here an asset’s liquidity is defined as the inverse of the impact a supply shock would
have on the asset return.) If arbitrageur wealth is high, as arbitrageur wealth increases, liquidity
increases, while price volatility decreases for all assets. As for correlations, they decrease for assets
whose fundamentals are uncorrelated, and increase for assets whose fundamentals are correlated.
Maybe more surprisingly, these relationships are reversed when arbitrage wealth is low. In that
case, as arbitrageur wealth increases, liquidity decreases, while price volatility increases for all
assets. At the same time, correlations increase for assets whose fundamentals are uncorrelated, and

decrease for assets whose fundamentals are correlated.

The reason for this reversal is that for high levels of wealth, arbitrageurs are unlikely to be

constrained and therefore their positions are not very sensitive to wealth. In that case, a drop in



wealth does not reduce much the positions arbitrageurs take and therefore does not affect much
the amount of wealth arbitrageurs put at risk. The opposite holds for low levels of wealth. In that
case, a drop in wealth leads to a large reduction in arbitrageurs’ positions, reducing the amount of

wealth arbitrageurs put at risk.
Relation to the Literature (Incomplete)

Our analysis builds on the recent literature on the limits to arbitrage and, more particularly, on
financially constrained arbitrage.!*> Gromb and Vayanos (2002) introduce a model of arbitrageurs
providing liquidity across two segmented markets but facing collateral-based financial constraints.
Their setting is dynamic, i.e., they consider explicitly the link between arbitrageurs’ past perfor-
mance and their ability to provide market liquidity, and how arbitrageurs take this link into account
in their investment decision. They also conduct a welfare analysis. This paper extends the analysis

by considering multiple investment opportunities.?

The analysis of Gromb and Vayanos (2002) is extended to multiple investment opportunities
in a static setting by Brunnermeier and Pedersen (2009) who show how financial constraints imply
that shocks propagate and liquidity co-moves across markets. In contrast, ours is a dynamic setting.
Kyle and Xiong (2001) obtain similar financial contagion effects driven by the wealth of arbitrageurs.
These arise not from financial constraints but from arbitrageurs’ logarithmic utility implying that

their demand for risky assets is increasing in wealth.

The paper proceeds as follows. Section 2 presents the model. Sections 3 and 4 study riskless

and risky arbitrage respectively. Section 5 concludes. The Appendix contains mathematical proofs.

2 The Model

2.1 Assets

Time ¢ is continuous and goes from zero to infinity. There is a set Z of risky assets and a riskless
asset. The risky assets come in pairs, and we denote by —i the other asset in asset i’s pair. The

payoff dD;; of asset ¢ between time ¢ and ¢ + dt is

dDiy = Didt + 04dB;y + o dBY,, (1)

! Alternative theories of the limits to arbitrage are generally based on incentive problems in delegated portfolio
management or bounded rationality of investors.

2Here, we discuss the relation of our paper to only the closest literature. It is however connected to a broader set
of contributions which, given binding (time) constraints, we intend to discuss in future versions. Gromb and Vayanos
(2010) survey the theoretical literature on the limits of arbitrage.

3Also, the model is cast in an infinite horizon, rather than a finite horizon.



where (D;, 0;, aif ) are constants and (B; ¢, Bif ;) are Brownian motions. The constant D; is asset i’s
instantaneous expected payoff. The Brownian motions (B; ., Bl-f ;) are common to assets i and —i,

ie., B;;y = B_;; and Bift = B{i .- The effect of B;; is the same on the two assets, i.e., 0; = 0,

!

while that of Bit is opposite, i.e., 0; = —o’,. Therefore, assets i and —i have identical payoffs

if O'Zf = 0, and have correlated but different payoffs if aif # 0. In both cases, we refer to the
asset pair as an arbitrage opportunity because in equilibrium arbitrageurs engage in a “spread
trade,” holding a long position in one asset and an equal short position in the other. Arbitrage

opportunity i, corresponding to the asset pair (i, —i), has fundamental risk if assets ¢ and —i have

different payoffs (azf #0).

We allow for a general correlation structure between the fundamental risks of different arbitrage

opportunities, and denote by pzf ; the instantaneous correlation between (Bf B]f ;) for assets (i, j)

2,07

not in the same pair. The correlation between (B;;, Bj;) does not matter for our analysis. The

correlation between (B; ¢, B]ft) is also unimportant, and we set it to zero for all assets (i, ).

We assume that all risky assets are in zero net supply. This assumption simplifies our analysis
because it helps ensure that arbitrageurs hold opposite positions in two assets in a pair. We treat
the return of the riskless asset as exogenous, and denote by r the continuously compounded riskless
return. This assumption is also for simplicity and because our focus is on the price discrepancies

between risky assets. The price of asset i is endogenously determined in equilibrium, and we denote

it by pi ;.

2.2 QOutside Investors

Assets can be traded by outside investors and arbitrageurs. Outside investors face market seg-
mentation and can invest only in a subset of the risky assets. For simplicity, we assume that
segmentation takes an extreme form, whereby each outside investor can only invest in one specific
risky asset and in the riskless asset.* We refer to the outside investors who can invest in asset i as
i-investors. We take market segmentation as given, i.e., assume that i-investors face prohibitively
large transaction costs for investing in any risky asset other than asset i. These costs can be due to

unmodelled physical factors (e.g., distance), information asymmetries or institutional constraints.

We assume that i-investors are competitive and form a continuum with measure p;. They

maximize expected utility of intertemporal consumption, with utility being negative exponential,

4More generally, we can assume that outside investors can invest in multiple risky assets, provided that none of
these assets belong to the same pair.



i.e.,

Ey [ / e‘”cmﬁitdt} . (2)
0

Negative exponential utility simplifies our analysis by ruling out wealth effects.

Investors ¢ and —i are identical in terms of their measure (u; = p—;), risk-aversion coefficient
(a; = a—;) and discount rate (8; = _;). They differ, however, in their propensity to hold their
respective assets because of an endowment that they receive. The covariance between this endow-
ment and asset payoffs differs across investors, and this creates the different propensity to hold the
assets. Moreover, the covariance can vary over time, and this can cause time variation in the price

discrepancy between the assets.

The endowment of i-investors between time ¢ and ¢ 4 dt is u; ;dD;;. If the coefficient w;; is
positive, then the endowment covaries positively with the payoff of asset ¢, and this reduces the
i-investors’ willingness to hold the asset. If instead u;; is negative, then the covariance is negative,
and ¢-investors view asset ¢ as a valuable hedge. We refer to u;; as the i-investors’ supply parameter:

an increase in u;; renders i-investors more willing to supply the asset.

Investors ¢ and —i have a different propensity to hold their respective assets if the supply

parameters (u; ¢, u—; ;) differ. We assume that these parameters are opposites, i.e.,
U—jt = —Uqjt- (3)

This assumption is for simplicity: together with the zero-net-supply assumption, it ensures that

arbitrageurs hold opposite positions in two assets in a pair.

To reduce the number of cases, we assume that the supply parameter of one asset in a pair is
always positive (and hence the other is always negative). We denote by A the set of assets with
positive supply parameters, i.e., A = {i € T :u;¢ > 0}. We assume that the supply parameter of

an asset in A follows the process
dui,t = qu(uz — ui,t)dt + U}Lf(ui7t)dBZt, (4)

where % > 0, u; > 0 and o} are constants, f(u;;) is a function such that w;; is always positive
(e.g., f(uit) = \Juit), and B}, is a Brownian motion. Arbitrage opportunity i has supply risk if

u; ¢ is stochastic, i.e., o' # 0.

We allow for a general correlation structure between the supply risks of different arbitrage

opportunities, and denote by p;’ j the instantaneous correlation between (B}ft,

BY,) for assets (i, j)

not in the same pair. The correlation between (B; ¢, B;-‘t) is unimportant for our analysis, and we
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set it to zero for all assets (i, 7). For simplicity, we also set the correlation between (Bzf ' B;-ft) to

zero for all (i, 7).

The optimization problem P; of an i-investor is to choose a position y;; in asset ¢ to maximize

(2) subject to the dynamic budget constraint
dwiy = r(wis — YisDie)dt + yit(dDs g + dpiy) + i edD; . (5)

The first term in (5) is the return from the riskless asset, which receives dollar investment w; ; —

YitDit, the second term is the return from the risky asset, and the third term is the endowment.

2.3 Arbitrageurs

Outside investors have different propensities to hold their respective assets, but cannot realize
the potential gains from trade due to market segmentation. This unsatisfied demand for liquidity
creates a role for arbitrageurs, who can invest across markets and exploit price discrepancies between
assets. We assume that arbitrageurs are competitive and form a continuum with measure one.’
Unlike outside investors, they can invest in all risky assets and in the riskless asset. They maximize

expected utility of intertemporal consumption, with utility being logarithmic, i.e.,

E [ /0 h 1og(ct)e—5tdt] . (6)

Logarithmic utility simplifies our analysis by ensuring that arbitrageurs’ consumption is a constant
fraction of their wealth regardless of the return on their opportunities, which is time-varying. The
constant fraction of wealth consumed by arbitrageurs can be interpreted not only as consumption

per se, but also as a proportional cost of running an arbitrage business.%

The optimization problem P of an arbitrageur is to choose positions {x;+}ie7 in the risky assets
to maximize (6) subject to a dynamic budget constraint and a financial constraint. The dynamic

budget constraint is

AWy =r (Wt - Z xi,t]%,t) dt + in,t(dDi,t + dpit) — cdt, (7)
€L €L

where W, denotes the arbitrageur’s wealth. The first term in (7) is the return from the riskless

®By fixing the measure of the arbitrageurs, we rule out entry into the arbitrage industry. This seems a reasonable
assumption at least for understanding short-run market behavior.

5Logarithmic utility introduces wealth effects, in the form of wealth-dependent risk aversion. These effects are
not present in the case of riskless arbitrage (Section 3), but arbitrageur wealth still matters because of the financial
constraint (8). In the case of risky arbitrage (Section 4), the wealth effects introduced by logarithmic utility coexist
with those introduced by the financial constraint.



asset, which receives dollar investment W; — ZiEI x; tDit, the second term is the return from the

risky assets, and the third term is consumption.

We derive a financial constraint from the requirement that arbitrageurs must post riskless
collateral to establish a position in each risky asset. We assume that a long or short position of
x;¢ shares of asset ¢ requires collateral m;|x; |, where m; > 0 is an exogenous margin. Since the
total collateral that an arbitrageur must post cannot exceed his wealth W;, the arbitrageur faces

the financial constraint

Wi > > milwigl. (8)

€L
To keep the model symmetric, we assume that m; = m_;.

An endogenous derivation of the margin m; can be found, for example, in Gromb and Vayanos
(2002), who show (8) in the case of one asset pair. The margin is derived from the requirement
that the position in each risky asset must be collateralized fully and separately from the positions
in other assets. The margin satisfies m; = m_; because of the symmetry of the model (zero net
supply and opposite supply parameters), and is an increasing function of asset volatility. Gromb
and Vayanos (2002) relate the assumption that arbitrageurs must collateralize their position in each

asset separately to that of market segmentation.

The financial constraint (8) limits the arbitrageurs’ investment capacity as a function of their
wealth. The arbitrageurs’ wealth is to be understood not only is their personal wealth, but also as

the pool of capital they can access frictionlessly.

Arbitrageurs in our model act as intermediaries, exploiting price discrepancies between assets
and providing liquidity to the other investors. Suppose, for example, that i-investors experience
an increase in their supply parameter, in which case —i-investors experience a decrease. Then
arbitrageurs buy asset ¢ from i-investors and sell asset —¢ to investors —i. Through this transaction

arbitrageurs make a profit, while also providing liquidity to the other investors.

2.4 Equilibrium

Definition 1 A competitive equilibrium consists of prices {pit}iez, positions y;; of the i-investors

for alli € T, and positions {x;}icz of the arbitrageurs, such that:

o Given {pi+}ier, yit solves problem P; for all i € T, and {x;;}ier solve problem P.



o The markets for all risky assets clear, i.e.,

WiYit +xig =0 forallie L. (9)

We define the risk premium ¢;; of asset ¢ as the difference between the present value of the

asset’s expected payoffs and price, i.e.,

> —r(s—t) D;
ip = By e dD;s| —pip = -~ Dir (10)
t

Definition 2 A competitive equilibrium is symmetric if for each asset pair (i,—i) the risk premia
are opposites (p_i+ = —¢iyt), the arbitrageurs’ positions in the two assets are opposites (x_;; =

—x;t), and so are the outside investors’ positions (y—ir = —Yit).

In the following sections we show that a symmetric competitive equilibrium exists. Existence
follows because of our model’s symmetry. Intuitively, the risk premia of assets i and —i are opposites
because the assets are in zero net supply and the supply shocks of investors ¢ and —i are opposites.
The arbitrageurs’ positions in the two assets are opposites because the risk premia are opposites.
The outside investors’ positions are also opposites because markets must clear. Note that symmetry
and (10) imply that asset ¢’s risk premium is one-half of the price wedge between assets —i and 1,

ie.,

P—it — Pi,
Gis = % (11)

We denote by
dR;y = dD; s + dp; s — rp;idt (12)

the instantaneous return per share of asset ¢ at time ¢ in excess of the riskless asset, and refer to it

simply as asset i’s return. Using (1) and (10), we can write this return as
ARy = roisdt + 0idByy + o] dBf, — doi. (13)

We refer to arbitrage opportunities by the asset ¢ in the pair that is in A, and by arbitrageurs’

investment in an arbitrage opportunity by the investment z;; in that asset.

3 Riskless Arbitrage

In this section we study the case where arbitrage opportunities have no fundamental risk and no

supply risk. No fundamental risk means that the assets in each pair (i, —i) have identical payoffs

10



(Ulf = 0). No supply risk means that each supply parameter u;; is deterministic (o}* = 0). For
simplicity, we also assume that u;; is constant over time. Eq. (4) implies that a constant u;; must

equal to its long-run mean u;.

In the absence of fundamental and supply risk, arbitrageurs earn a riskless return from spread
trades. Indeed, no fundamental risk implies that spread trades are not affected by shocks to asset
payoffs. Moreover, no supply risk implies that there are no shocks to supply parameters than can
affect asset risk premia. Since arbitrageurs earn a riskless return, their wealth W; is deterministic.
Hence, the arbitrageurs’ positions x;;, the outside investors’ positions y;;, and asset risk premia

¢; are also deterministic. We confirm below that a symmetric equilibrium with deterministic

(Wi, it iyt Pit) exists.

The case of riskless arbitrage yields non-trivial dynamics for arbitrageur wealth and asset risk
premia. Indeed, wealth increases faster when risk premia are high, but an increase in wealth triggers
a reduction in risk premia. We compute the dynamics of wealth and risk premia in closed form,
and determine how premia depend on wealth, supply parameters and margin requirements. These
results are useful not only for the analysis of riskless but also of risky arbitrage. Indeed, in Section
4 we use the closed-form solutions to derive properties of arbitrageurs’ portfolios and asset prices

when arbitrage risk is small.

3.1 Optimal Investment Policies

We first derive the optimal investment policies of outside investors and arbitrageurs. When the

risk premium ¢; ; is deterministic, it only has a drift term that we denote by Vfb 4

doi = ijtdt. (14)
Egs. (13), (14) and O'if = 0 imply that asset ’s return is

dR;; = ®;4dt + 0;dB; 4, (15)
where

(I)i,t = T’ﬁbz‘,t - pr (16)

denotes the asset’s expected return.

11



3.1.1 Outside Investors

Using (1), (12), (15), sz = 0 and u;; = u;, we can simplify the budget constraint (5) of an i-investor

to
dw; s = (rwi s + yi 1 Pis + uiDy) dt + (yi + u;) 03d By (17)

We conjecture that the investor’s value function is negative exponential as the expected utility, but

with a different risk-aversion coefficient, i.e.,
V . — *Az‘wi,t*gi,t 18
(wz,t) - € ) ( )

where g;; is a deterministic function.

Lemma 1 The value function of an i-investor has the form (18) with A; = ra;. The investor’s

first-order condition with respect to the position y; in asset i is

Diy = Aio} (yig + i) (19)

The first-order condition (19) equates asset ¢’s expected return ®;; to the marginal cost of
bearing asset i’s risk. This marginal cost is proportional to the investor’s total exposure to asset
’s risk, which is the sum of the position ¥;; and the supply parameter w;. The proportionality
coefficient is the product of the risk-aversion coefficient A; times the variance cr? of asset i’s payoff.
Eq. (19) can be viewed as the i-investor’s demand function, determining the investor’s position y; ;

as a function of asset i’s expected return ®; ;.

If (19) holds for an i-investor, it also holds for an investor —i in a symmetric equilibrium.
Indeed, since the risk premia of assets i and —i¢ are opposites, the same is true for the assets’
expected returns, i.e., ®_;; = —®; ;. Therefore, if (19) holds for an i-investor, it also holds for an
investor —i if y_;; +u_; = —(yi+ + u;). The latter condition is met because the supply parameters

u; and u_; are opposites, and so are the positions y; ; and y_; ;.

3.1.2 Arbitrageurs

Using (1), (12) and (15), and assuming that the risk premia of the assets in each pair are opposites,

we can write the budget constraint (7) of an arbitrageur as

Cth = ’r‘Wt + Z(xi’t — x—i,t)q)i,t — Ct dt + Z(Cl?@t + $_7;,t)0'idBi7t. (20)
€A €A

12



The arbitrageur’s expected return from investing in arbitrage opportunity i depends on the differ-
ence x;; — x_; ¢ between his positions in assets ¢ and —i. This is because the risk premia of the two
assets are opposites and hence the assets’ expected returns are also opposites. The arbitrageur’s
risk from investing in the same arbitrage opportunity depends instead on the sum z;; +x_; ; of his
positions in the two assets because this determines his total exposure to the Brownian motion B; ;

that characterizes the assets’ risk.

Eq. (20) implies, and Proposition 1 confirms, that the arbitrageur’s optimal positions in assets
i and —i¢ are opposites. Indeed, if the positions were not opposites, the arbitrageur could modify
them by the same amount until their sum becomes zero. According to (20), the expected return
from investing in arbitrage opportunity ¢ would not change, but the risk would become zero. Setting

xT_jr = —x;¢, we can simplify (20) to

dW; = (TWt + 2 Z xi,tq)i,t — Ct) dt. (21)
icA

The first term in (21) is the arbitrageur’s return from investing in the riskless asset, and the

second term is the return from investing in the arbitrage opportunities. The latter return is riskless

because the arbitrageur holds opposite positions in the assets in each pair. Hence, the arbitrageur

can achieve a riskless return superior to that available to the other investors.

The financial constraint (8) limits the arbitrageur’s ability to realize his excess return. We can
simplify (8) by noting that the arbitrageur’s spread trades involve long positions in the assets with
positive supply parameters, i.e., assets i € A, because in equilibrium these assets offer positive

expected returns. Using z;; = —x_;; > 0 for ¢ € A, we can simplify (8) to

Wy >2)  mmiy. (22)
i€A

Proposition 1 Suppose that the risk premia of the assets in each pair are opposites. An arbitrageur

e Consumes a constant fraction 5 of his wealth (c; = fWy).

Holds opposite positions in assets i € A and —i, with the long position being in asset i.

Invests only in opportunities i yielding the mazimum excess return per unit of collateral (i €

arg max;e A %) and is indifferent between any of them.

Invests up to the financial constraint if the mazimum excess return per unit of collateral is

. ®;
positive (maxjcq ~2* > 0).
J
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The intuition for the last two results of the proposition is as follows. The arbitrageur chooses

positions {z;}ic7 to maximize his excess return 2 Zie 4 2it®i ¢ subject to the financial constraint
(8). The solution to this problem is simple: the arbitrageur focuses on the opportunities yielding
the highest excess return per unit of collateral, and is indifferent between any of them. The excess
return per unit of collateral associated to opportunity ¢ is %: buying one share of asset ¢ and
shorting one share of asset —i yields excess return 2®; ; but requires collateral 2m;. If the maximum

excess return per unit of collateral is positive, then the arbitrageur’s excess return is positive. Hence,

the arbitrageur invests as much as possible, “maxing out” his financial constraint.

3.2 Equilibrium

Proposition 1 characterizes optimal investment policies given asset prices, but can be restated in

terms of the prices implied by these policies.

Corollary 1 There exists II; > 0 such that

o All opportunities i in which arbitrageurs invest (x;; > 0) offer the same excess return 11, per

unit of collateral, i.e.,

(p.
17't = Hta (23)

my

while the remaining opportunities offer return lower than II;.

o Arbitrageurs invest only in opportunities © such that

A0
A 1 (24)

my;

The equalization of excess return per unit of collateral across all opportunities in which arbi-
trageurs invest is a consequence of equilibrium: if returns differed, then arbitrageurs would focus
on the opportunities with the highest returns (Proposition 1), which would be a contradiction. The
common return II; of opportunities in which arbitrageurs invest can be viewed as a threshold: arbi-
trageurs invest in opportunity i if its excess return per unit of collateral in their absence exceeds I1;.
The corresponding inequality is (24): the left-hand side is the excess return per unit of collateral
in the absence of arbitrageurs since (19) implies that when y;; = 0, asset i’s expected return is
D, = Aiagui. Eq. (24) implies that opportunities ¢ in which arbitrageurs invest are associated
with low margin requirements m; and with high hedging motives by outside investors because of

high risk aversion A;, payoff variance UZ-Q, and supply parameter u;.
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An increase in the excess return II; per unit of collateral raises the right-hand side of (24) and
can reduce the set of opportunities in which arbitrageurs invest. An increase in Il; can be triggered
by a reduction in arbitrageur wealth W;. Indeed, when arbitrageurs are less wealthy, they are
less able to exploit price discrepancies and to offer liquidity to outside investors. Therefore, price

discrepancies are larger, and so is the return from arbitrage activity. To compute 1I; as function of
. 020

W, we denote by IV the number of elements of A, by II,, the n’th largest value of A%iiul fori € A, by

in the element of A corresponding to that value, and by A,, the set {iy }m=1 n, for n € {1,..,N}.

The value II,, represents the excess return per unit of collateral above which arbitrageurs cease to

invest in opportunity 4,,. We also set
1

B, = JE———p
2> ieAn Aro?

C, =28, Z mi i +1r — B,
’iE.An

Hn+1
B, ’

W, =2 Z MG iU —
€A,

forn e {1,.,N}, and Byy1 =0, Cyy1 =7 — 3, ﬂN+1 =0, Wy =0 and WN+1 = 00.

Proposition 2 The arbitrageurs’ excess return 1I; per unit of collateral is a decreasing, convex

and piece-wise linear function of their wealth Wy.

o If Wy > Wy, then the financial constraint is slack and arbitrageurs earn zero excess return
(II; = 0). They invest x;+ = pu; in opportunity i, thus eliminating the price discrepancy

between assets i and —i, and providing perfect liquidity to outside investors.

o If W, < Wy, then the financial constraint is binding and arbitrageurs earn the positive excess

return

M=Bn (2 > mipu— W, (25)

€A (wy)
per unit of collateral, where n(W) € {1,.., N} is such that Wn(W),l <W < Wn(W). They
invest 0 < x;; < piu; in opportunity i, thus not eliminating the price discrepancy between
assets i and —i, and not providing perfect liquidity to outside investors. Their investment is

positive (x;; > 0) only in opportunities i € A,.

If arbitrageurs are sufficiently wealthy, then they compete their excess return down to zero

and eliminate price discrepancies between asset pairs. Eliminating the discrepancy between assets
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¢ and —7 requires investing x; ; = p;u; in opportunity ¢ and posting collateral 2m;p;u;. Therefore,
arbitrageurs can eliminate all discrepancies if their wealth W; exceeds the total required collateral
2 Zz‘e A MGt = WN. If instead W; < WN, then arbitrageurs’ excess return is positive and the

financial constraint binds. A reduction in W} in the constrained region raises 1l;.

The arbitrageurs’ excess return II; per unit of collateral is not only decreasing in their wealth
W; but is also convex. Indeed, a decrease in W; has no effect on II; = 0 in the unconstrained region
W, > WN, but raises II; in the constrained region W, < WN. Moreover, the increase in II; in
the constrained region occurs at an increasing rate. This is because as II; increases, arbitrageurs
withdraw completely from the less profitable opportunities. Therefore, their collateral is spread
across a small number of opportunities, and a reduction in their total collateral W; causes a large
reduction in collateral allocated to each opportunity. This results in a large reduction in their

investment in each opportunity and a large increase in the opportunity’s excess return.

The relationship between the arbitrageurs’ excess return Il; and their wealth W; goes in both
directions. At a given point in time, II; is fully determined by W; according to Proposition 2.
Conversely, 1I; determines the dynamics of W;: if, for example, 1I; is large, arbitrageur wealth earns
a high return and grows faster. Combining Corollary 1 with the arbitrageurs’ budget constraint

(21), we find that arbitrageur wealth earns the riskless return r + II;.

Lemma 2 Arbitrageur wealth evolves according to

dW; = (7" + II; — ﬁ) Wedt. (26)

Determining arbitrageur wealth W; requires solving the differential equation (26), for II; de-

termined by Proposition 2. To rule out trivial cases, we make the following assumption

Assumption 1 Arbitrageurs’ discount factor B satisfies

r<pB<r+I. (27)

If B < r, then arbitrageurs save more than they consume even when they earn the riskless
rate r on their savings. Hence, their wealth converges to infinity. If r + I, < B, then arbitrageurs
consume more than they save even when they earn the riskless rate r + f[l, which is the highest
possible return from arbitrage activity. Hence, their wealth converges to zero. Under Assumption 1
instead, arbitrageur wealth converges to a steady-state value W* > 0. Critical for convergence, and
for the steady state’s uniqueness, is that the arbitrageurs’ return II; is decreasing in their wealth

W;. For example, when Wy is high, II; is low, and hence W; decreases (because r + II; < ). This
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raises Il;, and eventually W; stops decreasing and reaches its steady-state value. Conversely, when
Wy is low, II; is high, and hence W; increases. This lowers II;, and eventually W, stops increasing

and reaches its steady-state value. Thus, the dynamics of arbitrageur wealth are self-correcting.

To determine arbitrageur wealth, we define the function F(W, u,n) by

%% Cru
F(W,u,n) = i , (28)
oW [eCnv — 1] + 1
and the times u,, by
Wh_1 = F(Wh, tun,n) (29)
forn=n(W*)+1,.,N,
Wy = F(Wh_1, tun,n) (30)

forn = 2,..,n(W*) — 1, and u,, = oo for n = n(W*). The function (28) describes the dynamics of

A~

arbitrageur wealth in the interval (W,,_1, Wn], where they invest in the n most profitable opportu-
nities i € A,,. Wealth is decreasing in that interval if n > n(W™*) 4 1, i.e., if the interval is above

the steady-state value W*, and is increasing if n < n(W*) —1, i.e., if the interval is below W*. The
time u, in (29) measures how long it takes for wealth to decrease from Wn to Wn,l > W*, while

the time u,, in (30) measures how long it takes for wealth to increase from Wn_l to Wn < W™,

Proposition 3 Arbitrageur wealth converges monotonically to its steady state value W*.

e Starting from Wy > W*  wealth decreases to W* as follows
Witw = F(We, u,n(Wy)) for w € [0,u(Wy)) where Wi yw,) = Wn(Wt)—lﬁ (31)

= F(Wp,u,n) foru € [0,uy), (32)

w n(Wy)—
t+u(Wt)+Zm<gf_)~_1 Yt u

where n = n(W*),..,n(W) — 1.

o Starting from W, < W*, wealth increases to W* as follows
Witn = F(Wy,u,n(Wy)) for w € [0,u(Wy)) where Wiy yw,) = Wn(wt), (33)

w

(W) + 20 ) aq Umtu F(Wn—l, u, ) foru € [0,up), (34)

where n = n(Wy) + 1, ..,n(W*).
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Lemma 3 Arbitrageurs’ investment in opportunity i is

11
x;p = max {Mz‘ <uz - ml;) ,0} . (35)
aial-

In steady state, arbitrageurs earn excess return excess II = 8 — r per unit of collateral, as can
be seen by setting dWW; = 0 in (26). This excess return is larger if arbitrageurs are more impatient
(large ). Indeed, since arbitrageurs consume a larger fraction of wealth, they have less wealth
to use as collateral. Therefore price discrepancies are larger, and so is the return from arbitrage

activity.

We now turn to risk premia which, from (16) equal the present value of future instantaneous

expected excess returns:
o0
Git = / D; e g, (36)
¢

From ®; ¢ = my;Il; = m; B max {0, W, — W}, we can derive the risk premia dynamics from that of

arbitrageur wealth:

it = mZ-B/ max {0, W, — W} e Tt s, (37)
¢

Proposition 4 The risk premium of asset i € A at time t is

° If Wy < We,
00 W, As
¢i,t = sz/ WC - B Ate e_rSdS. (38)
0 ZWt (6 S — ].) + 1
o If W, > W,

W\ 7= [ Wes
it =B | — W, — e "ds. 39
Pt (Wt> /0 [ BW, (e4s —1)+1 (39)

o Ast increases, the risk premium ¢;; converges monotonically towards its steady state value

¢i:mi<ﬁ_r>-
T

Finally, we can derive the arbitrageurs’ equilibrium positions (Lemma 3).
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Proposition 5 The arbitrageurs’ position in asset i € A at time t is as follows:

Tit = [ (uz - %B max {W, — Wy; 0}> : (40)
a;o;

)

3.3 Properties

Having derived all equilibrium variables in closed form, we can draw many implications. Some
of these are cross-sectional in nature, i.e., comparing variables across opportunities with different
characteristics. Others involve comparative statics with respect to arbitrageur wealth. These can
be considered in two ways. First, because arbitrageur wealth varies over time out of steady state,
the comparative statics results can be translated into time series predictions while the equilibrium
is off the steady state. Alternatively, they can be interpreted as the effect of an unanticipated

exogenous shock to arbitrageur wealth. These are also useful for the analysis of risky arbitrage.

Note that due to the model’s symmetry, optimal risk-sharing, which would result from uncon-

strained trading, would imply ¢;; = 0.
Definition 3 The risk premium ¢;; is a measure of the illiquidity (i,t)- and (—i,t)-investors face.

Corollary 2 The risk premia are decreasing and convex in arbitrageur wealth, i.e., for alli € A

) 2.
a¢z,t <0 and 0 ¢z,t

> 0.
oW, OW?

Consider a drop in arbitrageur wealth. Intuitively, the risk premia should increase because ar-
bitrageurs being poorer, they reduce their liquidity provision and allow prices to diverge. Moreover,
when arbitrageur wealth is smaller, the return on arbitrageurs’ wealth is larger and therefore a drop

in arbitrageur wealth has a larger impact on future arbitrage wealth and thus on risk premia.

Corollary 3 An asset’s risk premium is increasing in its supply, and more so the lower arbitrageur

wealth is, i.e., for alli € A

O0dit Ppiy

Intuitively, ¢;; increases with u; since the discrepancy between the valuations of (i,t)- and

(—1,t)-investors is larger. There is a mitigating effect. Indeed, the higher w;, the higher the
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arbitrageurs’ return and their future wealth. This tends to reduce future excess returns, and
therefore the current risk premium. For low levels of W, the mitigating effect is small, and therefore

u; has a large effect on ¢; ;.

Corollary 4 Illiquidity is higher for opportunities with higher margin requirements. These oppor-

tunities offer higher instantaneous excess returns and have higher risk premia, i.e., for all (i,j) € A?
m; > My = (1)7;775 > (I)j,t and ¢i,t > ¢j,t- (41)
Intuitively, investment opportunities requiring arbitrageurs to tie up more capital as collateral

must provide them with a greater reward, i.e., a higher excess return. Risk premia being the present

value of future excess returns, they must be higher for such opportunities.

Corollary 5 Illiquidity and risk premia are more sensitive to arbitrageur wealth for opportunities

with higher margin requirements, i.e., for all (i,7) € A?

OPi - 09 <0 (42)

m; > My = aw, aw, .

Intuitively, changes in arbitrageur wealth affect the excess return (current or future) per unit

of collateral, and therefore impact more strongly opportunities with higher collateral requirements.

Corollary 6 Illiquidity and risk premia are more sensitive to the supply of other assets for oppor-

tunities with higher margin requirements, i.e., for all (i,j, k) € A?

0t - 0dj4

0
8uk 8uk >

m; > my; =

Intuitively, changes in supply affect the excess return (current or future) per unit of collateral,

and therefore impact more strongly opportunities with higher collateral requirements.

Corollary 7 Suppose Wy < W,. Changes in arbitrageur wealth impact more strongly their position

2 2
aio; a;oy

Mmipi T Mg

in opportunity (i, —i) than in (j,—7) if

When arbitrageurs are unconstrained (W; > W), they invest x;; = y;u; in opportunity (i, —i),
independently of their wealth. Instead, when they are constrained (W; < W.), their wealth affect

their positions. For example, following a drop in wealth, arbitrageurs are more constrained and
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reduce their investment in all opportunities. Investment is more wealth-sensitive for opportunities
with higher collateral requirements because the excess returns that arbitrageurs require to invest in
those opportunities are more affected by wealth changes (Corollary 4). Investment is less wealth-
sensitive for opportunities where outside investors are more risk-averse or assets are riskier because

outside investors for those opportunities have a more inelastic demand for insurance.

4 Risky Arbitrage

We now consider the possibility of arbitrage risk which in our model, stems from two sources:
fundamental risk and supply risk. Fundamental risk means that assets ¢ and —¢ in a pair need not

f

pay identical dividends, i.e., sz # 0. We assume o; > 0 for 7 € A. Supply risk means that asset

i’s supply w;+ is stochastic, i.e., o # 0. We assume o > 0 for i € A.7

We derive equilibrium conditions in Section 4.1, derive general properties of the equilibrium in

Section 4.2, and characterize the equilibrium more fully for small arbitrage risk in Section 4.3.

4.1 Optimal Investment Policies

As we will see, an asset’s risk premium is affected by the fundamental shocks and the supply shocks
to all assets. Hence, for i € A, we denote the dynamics of the risk premium ¢; ; by

d¢zt_V dt+Zaf¢dBft+Zou¢dB“ (43)

2,7, 2,7,
JeEA jeEA
Similarly, the instantaneous return of asset i is affected by all shocks to all assets because they
affect the asset’s risk premium. From Egs. (13), (16) and (43), we have

dRiy = ®iydt + 0:dBiy + o] dBf, =Y " ol%,dBl, =" 00 ,dBY,. (44)

JEA jeA

7Assumlng o] >0 and ;' > 0 is without loss of generality as we can replace Bft and Bj'; with their opposites.
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4.1.1 Outside Investors

We first characterize the optimal investment policies of outside investors. Using (1), (10), (16) and

(43), we can write the (i, ¢)-investors’ dynamic budget constraint (5) as

dw; ; = [Twi,t + Uit (D'i - VZ),:) + yi,tq)i,t} dt

+ (yig + tig) |0idBig + ol dBf, =" ol9,dBl, - " 00 dBY, | . (45)

JjeEA jeA

The drift is the same as for riskfree arbitrage. The diffusion term captures the risky part of the

return of asset ¢ (Eq. (44)). Given this, the (4, ¢)-investors’ objective is

a; 2
max Vit Piy — 51 (yip + wig)? (o1 } : (46)
it

The first term is the expected excess return (i, t)-investors derive from their holding in asset i. The

second term is a cost of bearing risk. It depends on asset i’s instantaneous volatility computed as

(ohy? = V8D _ 2y (o olo) s S (l2) Y (512 (a7)

jeA/{i} JeEA
At the optimum, the expected excess return of asset i to the marginal cost of risk-bearing, i.e.,
2
@iy =a; (o)) (it + uig) - (48)

Their first order condition determines the (7, t)-investors’ demand y; ;. By symmetry, problem P_; ¢

yields the same first-order condition as P; ;.

4.1.2 Arbitrageurs

We characterize an arbitrageur’s optimal consumption and investment policy under the restriction

that the prices of assets in the same pair are driven by symmetric processes, i.e., ¢_;; = —¢;;.

Using (1), (10), (16), (43) and symmetry, the arbitrageurs’ dynamic budget constraint (7) is

AW, = (rWt +2) @iy — ct) dt+2> wiy | ofdB, =" ol0,dBl, - " ot0,dBy, | . (49)
i€ A ic A JEA jeA

The drift is the same as for riskless arbitrage, i.e., arbitrageur wealth increases by the risk free return

plus the expected excess returns provided by all opportunities net of the arbitrageurs’ consumption.
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Now however, there are also diffusion terms because arbitrage is risky. Denote the respective

diffusion coeflicients for the fundamental shock dB{ ¢ and the supply shock dB}, as

w
]ft = ij,tajf -2 Z xi,tO{ﬁt and UW = -2 Z T tawt (50)
€A ieA

A fundamental shock to opportunity (j, —j) means that assets j and —j do not pay the exact same

dividend. The “net dividend” affects arbitrageurs’ profit and hence their wealth. This direct effect
is captured by 2z ta . At the same time, the shock affects all opportunities’ risk premia, and hence
the arbitrageurs’ capital gains from their investments in these opportunities. This effect is captured
by =23 ca a:i,tal{ﬁt. A supply shock to opportunity (j, —j) means that (j,¢)- and (—j, t)-investors
are more eager to trade. Such a shock does not affect arbitrageur wealth directly but indirectly
through its effect on the risk premia of all opportunities, which in turn affects arbitrageurs’ capital

gains and ultimately their wealth. This effect is captured by -2, 4 CCZ"tO'ZL?t.

For i € A, denote 2<i>i,t the arbitrageurs’ risk-adjusted return from opportunity (i, —¢). Indeed,
their expected excess return from opportunity (i, —i), 2®;+, must be adjusted for the fundamental
and supply risk the opportunity entails. This is done by multiplying the arbitrageurs’ coefficient of
absolute risk aversion, equal to 1/W; due to logarithmic utility, with the covariance of the return

of opportunity (i, —i) and that of the arbitrageurs’ portfolio, i.e.,

CO’Ut(dRi’t — dR_Z‘,t, th)
Wedt ’

20, = 20, ; — (51)

The covariance is obtained by summing over all fundamental and supply shocks the loading of

(i, —i)’s return on each shock times the arbitrageurs’ portfolio loading on that shock, i.e.,®

. 1 f fo fW
(I)i,t:q)i,t_wt (o7 — Uut Z 94,5495t ZU,Jt Tt
jeA/ {3} JEA

We can now derive the arbitrageurs’ optimal policy.

Proposition 6 Denote II; = max;c g ‘@i,t/mi . Fach arbitrageurs consumes a fraction B8 of his

wealth, i.e., ¢ = Wy, and his investment policy satisfies one of the following conditions.

e The financial constraint (8) is slack and ®;; = 0 for all i.

8The arbitrageurs’ logarithmic utility simplifies the analysis because risk is measured by the covariance with the
arbitrageurs’ portfolio and not with other state variables.
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e The financial constraint (8) is binding and for all i € A,

A A

o, P,
xip > 0= kL II; and zip < 0= —ut —1II;. (52)
m; my;

Proposition 6 is Proposition 1’s counterpart for risky arbitrage. When the financial constraint
is slack, arbitrageurs close all opportunities. When the financial constraint is binding, arbitrageurs
invest only in opportunities yielding the maximum return on collateral. There are however two
differences with Proposition 1. First, the relevant return from opportunity (i, —i) is the risk-
adjusted return @i,t, which depends both on prices and arbitrageur positions. Second, arbitrageurs
can “short” some opportunities, i.e., long the pricier asset and short the cheaper one (z;+ < 0 for

i € A). This can be optimal for arbitrageurs for hedging their long positions in other opportunities.

4.2 Amplification and Contagion: Direct and Indirect Effects

Equilibrium prices and positions solve the first-order condition of outside investors (Eq. (48)) and
arbitrageurs (Proposition 6). This system of equations is complex. Here we derive general properties

of equilibrium.

Assumption 2 Define W.; = 2 ZiGA m;piui . We assume

2
. a0ty
0<fB—r<BWgy and mmu>ﬂ—r.
’ €A m;

In equilibrium, the risk premium ¢;; is a function of arbitrageur wealth W; and the supply

parameters {u;}jca. Eq. (49) and Ito’s Lemma imply

o _ O%it sw

Tigt = aw, Tt b= ot + ool (53)

Ui)j’t - 8Wt Jit au]t J

and

As for riskfree arbitrage, arbitrageur wealth creates a linkage between the different opportuni-

ties even though their fundamentals are independent.

Lemma 4 Fundamental and supply shocks to one opportunity affect arbitrageur wealth and the risk

premia of all opportunities. More precisely, for (i,j) € A2, the effect of a fundamental shock dB]{t
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to opportunity (j,—j) on arbitrageur wealth and on asset i’s the risk premium ¢;; are respectively

f
fW 2xj1t0—j 54
oip = T (54)
L4+ 22 heahtaw,
f
fo _ 0%t 22,40
Tigt = W 9k 1 (55)
P14 2D e aThi W,
The effect of the supply shock dBj', on the same variables are respectively
2 Z T ¢k t
uW keA Lkt gy, O
Ot = ad) ) (56)
142 D ke A Tkt B
¢y,
up 8¢Zt ol ngz-,t QZkEA Lt Ouj ¢ to—u (57)

Tigt = 7j d
Oujt 8Wt1+22k€Axkta‘€Vt

To develop an intuition, assume that (as for riskless arbitrage) arbitrageurs long all opportu-

nities (z;+ > 0 for all i € A), and risk premia decrease with arbitrageur wealth.

After a positive fundamental shock dBJf’ , to opportunity (j, —j), asset j’s dividend exceeds
asset —j’s, and arbitrageurs receive the “net dividend” 2mj7tajf dB]f ;- This direct effect on wealth
corresponds to the numerator in (54). Moreover, arbitrageurs being richer, risk premia decrease and

the arbitrageurs realize capital gains 2, - 4 2 t%%/ This indirect effect on wealth corresponds

3¢k t

to the denominator in (54). Since xp; > 0 and < 0, this indirect effect amplifies the direct

effect. The indirect effect on the risk premium ¢;; is (55).

A positive supply shock dB}, to opportunity (j,—7) means that (j,t)- and (—j,t)-investors
are more eager to trade. Holding wealth constant, such a shock has the direct effect of increasing

8¢'L t ’udBU

asset ¢’s risk premium by 7 e

the first term in (57). Due to the increase in risk premia,

. . . 0 . . .
arbitrageurs realize a capital loss 2, 4 :Uhtai—kfza;‘. Moreover, arbitrageurs being poorer, risk
T

premia increase and the arbitrageurs’ loss is amplified. The indirect effect on wealth is (56) and on

the risk premium ¢;; is the second term in Eq. (57).

4.3 Small Arbitrage Risk

n this section, we characterize the solution more fully when arbitrage risk is small (sz ~ (0 and

o ~ 0), and supply parameters are slowly mean-reverting (k{ ~ 0). Specifically, we study how an
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asset’s liquidity, volatility and correlation with other assets depend on arbitrageur wealth. We also

study arbitrageurs’ positions.

4.3.1 Liquidity

Eq. (44) implies that the impact of a supply shock dBj; to asset ¢ at time ¢ on the asset return

dR;; is |0§‘?t| Hence we define asset i’s liquidity as

1

)\i,t = wh |
’ i,0,t

(58)

All markets are less liquid than absent constraints. Indeed, arbitrageurs cannot absorb as much
of the supply shocks as they otherwise would. Since the extent to which financial constraints bind
depends on arbitrageur wealth, it is clear that liquidity should depend on arbitrageur wealth. We

show that while it does indeed, more arbitrageur wealth does not always yield more liquid markets.
Proposition 7 There exists ¢ > 0 going to zero when {ij, U}-‘, /f}‘}jeA go to zero such that

o If Wy > Wi +e€, asset i’s liquidity \;; increases with arbitrageur wealth W.

o IfW < Wy < Wy —e€, asset i’s liquidity \;; decreases with arbitrageur wealth W;.

The intuition is as follows. Supply shocks affect risk premia directly but also indirectly through
arbitrageur wealth (Lemma 4). The direct effect is weaker when arbitrageur wealth is high (Corol-
lary 3).? The indirect effect, however, is a hump-shaped function of wealth. Indeed, at low levels
of wealth, the financial constraint is binding and an increase in wealth triggers a sharp increase in
arbitrageurs’ positions. When positions are larger, arbitrageur wealth is more sensitive to changes
in risk premia, and therefore the indirect effect is stronger. Instead, at high values of wealth,
arbitrageurs’ positions are less sensitive to wealth. The main effect of an increase in wealth is to
render risk premia less sensitive to wealth (Corollary 2), implying a weaker indirect effect. The

hump-shaped indirect effect drives the U-shaped pattern of liquidity.

4.3.2 Volatility

We next examine how arbitrageur wealth affects the volatility of assets. The volatility of asset i

is given by Eq. (47). All assets are more volatile than absent financial constraints. And again, it

9Corollary 3 is for the case ij =0} = Kk = 0, but by continuity, the result extends to small values of (Jf, oj,K5).
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is intuitive that volatility should depend on arbitrageur wealth. Indeed asset i’s volatility depends

on factors affecting the asset’s dividend, o; and O'Z-f , but also on factors affecting the supply of and

fé ug

demand for the asset, o} ; it Unlike the former, the latter do depend on arbitrageur wealth,

,and o

so that asset volatilities do too. We show however that they do so in a non-trivial and generally

non-monotonic way.
Proposition 8 There exists € > 0 going to zero when {Ujf, oy, /i}‘}jeA go to zero such that:

o If Wy > Wi+ €, asset i’s volatility Uft decreases with arbitrageur wealth W.

o If W < Wy < Wey — €, the component of asset i’s volatility O',ﬁ due to supply shocks dB;ft

increases in arbitrageur wealth Wy, and that due to the fundamental shock dBj{t, j e A,
increases if

20 .
ajo;Ujt < ZkeAmkukuk,t

2
m; mpHk
I D ke aro?

(59)

The intuition is as follows. A supply shock to asset j # i has no direct effect on asset i’s
risk premium. However, as for a supply shock to asset 7 itself, its indirect effect is a hump-shaped

function of wealth. Therefore, absent fundamental shocks, volatility would be hump-shaped.

The fundamental shock dB]J: . also generates hump-shaped volatility if j satisfies condition (59).
This condition is satisfied by a non-empty subset of A, and by all assets in A if they are homogenous
(and in particular if there is only one opportunity). It is not satisfied when ajajzuj,t /m; is large
relative to a weighted average of this variable across assets, and in that case the volatility due
to dBJJ: , decreases with arbitrageur wealth. The intuition is that an increase in wealth leads to
an increase in arbitrageur positions (implying larger volatility), but to a reduction in the wealth-
sensitivity of risk premia (implying smaller volatility). When u;, is large, arbitrageurs are invested
heavily in opportunity (j, —j), and the second effect dominates because the shock dB;; has a large

impact on wealth.'®

10Condition (59) is not needed for supply shocks because the direct effect of dB ]f ; is through arbitrageurs’ position
in opportunity (j, —j), while that of dB}; concerns all opportunities.
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4.3.3 Correlations

We now turn to asset correlations which again differ from the unconstrained case. First, some assets
have uncorrelated fundamentals, i.e., dividends and supply. In our model, these are assets not in the
same pair. Absent constraints or segmentation, these assets’ returns would be uncorrelated. With
constraints however they are correlated because arbitrageur wealth is a common factor affecting
all asset returns. Second, assets in the same pair have correlated fundamentals but their returns’
correlation is below that absent constraints. We show that correlations depend on arbitrageur

wealth in a non-trivial way.

Proposition 9 Consider (i,i') € A2, i # i'. There exists € > 0 going to zero when {ij, oy, /f}‘}jeA

go to zero such that

o If W, > W, +e, the correlation between assets i and i’ decreases with arbitrageur wealth W.

o I[fW <W; < W — ¢, the component of the correlation between assets i and i due to supply
shocks dB]]: ¢ increases with arbitrageur wealth Wy, and that due to the fundamental shock

dB’/

i J € A, increases if (59) is satisfied.

e The opposite holds for the correlation between assets i and —i, and for that between assets 1

and —1i'.

The intuition is as follows. Assume that (as for riskless arbitrage) arbitrageurs long all oppor-

tunities (z;¢ > 0 for all i € A), and risk premia decrease with arbitrageur wealth.

Consider first two assets i # ¢/ that arbitrageurs long. For such assets, correlation is positive
despite their fundamentals’ independence. For high levels of wealth, as wealth increases, their cor-
relation converges to that absent constraint, i.e., zero. Things are different for low levels of wealth.
Indeed, a given increase in arbitrageur wealth translates into a larger increase in arbitrageurs’ po-
sitions, and hence in their exposure to supply shocks. Since arbitrageur wealth is a factor common
to all assets, this increases the correlation between i and /. Hence, the correlation between ¢ and

' tends to be hump-shaped or decreasing in wealth.

Consider now assets ¢ and —i’. For such assets, correlation is negative despite their fundamen-
tals’ independence. Because fundamental and supply shocks have opposite effects on assets i’ and

—1', the correlation between assets ¢ and —¢’ tends to be inverse U-shaped or increasing.

Finally, consider assets ¢ and —i. These assets tend to be less correlated than absent constraints.

Because fundamental and supply shocks have opposite effects on assets i and —i, the correlation
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between assets ¢ and —¢ tends to be inverse hump-shaped or increasing.

One interesting aspect of these results is that the effect of a change in arbitrageur wealth on
correlations is not uniform across asset pairs or across wealth levels. For instance, a reduction
in arbitrage capital (e.g., as during a financial crisis) does not necessary lead to an increase in
correlations across all assets, a phenomenon often viewed as contagion, and this for two distinct
reasons. First, arbitrageurs’ activity tends to bring the prices of assets with correlated fundamentals
(e.g., i and —i) in line with each other. When they are poorer, they may be able to perform that
role, and the correlation between such assets decreases. Second, for low levels of arbitrage wealth,
arbitrageurs hold small positions and this weakens the transmission of shocks through arbitrageur

wealth, reducing the correlation between assets with uncorrelated fundamentals.

4.3.4 Arbitrage Positions

We next examine how arbitrageur positions depend on their wealth and on the risk of investment
opportunities. When arbitrageurs long all opportunities (i.e., x;; > 0 for i € A), Eq. (51) and

Proposition 6 imply that for all i € A, the expected excess return from opportunity (i, —i) is

CO’Ut(dRi’t — dR_Z‘,t, th)
2Widt

Qi = milly + (60)

The first term is a compensation for tying up capital as collateral. The risk-adjusted return on
collateral II; is positive when the financial constraint binds and zero when it is slack. The second
term is a compensation for risk. It is positive because both fundamental and supply shocks induce

positive correlation between the return on opportunity (i, —¢) and arbitrageur wealth. Indeed, a
positive fundamental shock dB]f , to j € A raises arbitrageur wealth, leading to lower risk premia
and higher returns from all opportunities. A positive supply shock dBj, to j € A raises premia,

leading to lower arbitrageur wealth and lower returns from all opportunities.

Lemma 5 The financial constraint becomes slack at a lower level of wealth than under riskless

arbitrage. More precisely, if {O‘f, o}, K} }jea are small, financial constraint (8) holds as an equality

if and only if Wy < Wy — €, where e > 0.

The intuition is as follows. Contrary to the riskfree arbitrage case, aggregate risk is not zero.
Hence optimal risk sharing does not involve full insurance for outside investors. Said differently,
because arbitrageurs require positive compensation for risk from each opportunity, they do not

drive expected excess returns down to zero even when they have enough wealth to do so.
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Proposition 10 For {ajf, of, H;'L}jE.A small, consider (i,i') € A% such that (0, a;, i, uit) = (O, @y, pir, Uir g)-

o If m; > my and Ulf = sz, changes in arbitrageur wealth impact more strongly their position

in opportunity (i,—i) than (i', —1).

o If m; = my and azf > oi]j, changes in arbitrageur wealth impact more strongly their position

in opportunity (i, —t) than (i', —i") when Wy > W, + € for e > 0 that converges to zero when

f u u
{aj,aj K] }iea go to zero.

When arbitrageurs are unconstrained, their positions are limited only by risk aversion. If
arbitrageur wealth decreases within that region, risk-aversion increases (the coefficient of absolute
risk aversion is 1/W}) and returns become more volatile (Proposition 8). These mutually-reinforcing
effects induce arbitrageurs to scale down their positions, especially in opportunities that involve

more risk. These are the opportunities with high collateral requirements (high m;) and high

fundamental risk (high aif ). Note that opportunities with high collateral requirements are more
affected not because the opportunity cost of collateral increases, but because their returns are more

volatile.

Consider next the region where the financial constraint binds. Under riskless arbitrage, arbi-
trageurs scale down more their positions in opportunities with high collateral requirements (Corol-
lary 7). Under risky arbitrage, arbitrageurs are also concerned about the risk of each opportunity,
but the variation of this effect with wealth is ambiguous. On the one hand, when wealth decreases,
arbitrageurs become more risk-averse. On the other hand, return volatility can decrease (Proposi-
tion 8). As a consequence, arbitrageurs can scale down their positions less in riskier opportunities.

For small arbitrage risk, the effect of m; is unambiguous (same as under riskless arbitrage), but the

effect of alf is ambiguous.

5 Conclusion

This paper develops a framework to examine the relationship between intermediary capital, finan-
cial market liquidity and asset prices. Its main features are as follows. First, arbitrageurs are
sophisticated investors with better investment opportunities than other investors, but they face
financial constraints. Second, ours is a dynamic general equilibrium model capturing the dynamic
interaction between asset prices and arbitrageur capital. Third, arbitrageurs face multiple arbitrage

opportunities with different characteristics, across which they must allocate their scarce capital.
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We compute asset prices and arbitrageur positions in closed form when arbitrage is riskless.
Using these closed-form solutions, we also compute asset prices and arbitrageur positions when
arbitrage risk is small. We show that liquidity, volatility and correlations are non-monotonic in
arbitrageur wealth: liquidity is smallest, volatility is largest, correlations between asset pairs with
uncorrelated fundamentals are largest, and correlations between asset pairs with highly correlated

fundamentals are smallest for intermediate levels of arbitrageur wealth.

Our analysis has left aside a number of important questions which we intend to address in future
research. Market segmentation and financial constraints have been imposed exogenously; deriving
these from more primitive frictions is an important question. Likewise, our analysis precludes capital

flows in or out of the arbitrage industry, as well as imperfect competition between arbitrageurs.
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Appendix (Incomplete)

A Riskless Arbitrage

Proof of Proposition 1 and Corollary 1: We solve a given arbitrageur A’s problem P; using
dynamic programming. We distinguish between arbitrageur A’s wealth W;, and the arbitrageurs’
total wealth W;. In equilibrium Wt = W, but distinguishing Wt from W; is important as W;
influences prices while arbitrageur A can affect only W;. We denote {Zit}iea arbitrageur A’s
positions and ¢ his consumption to distinguish them from the arbitrageurs’ total positions {z; ¢ }ic 4
and consumption ¢;. We conjecture the value function

log (W)

V (W, W) = 3

For riskless arbitrage, (Wt, W}) are deterministic, and the Bellman equation is

max [log(ét) + Vi, (rWt +2 Z Ty Piy — ét> + Vv — BV | =0, (A.2)

L, t,Ct .
€A

where 1}" denotes the drift of W;. The first-order condition with respect to ¢ yields ¢ = BW,.
Optimizing over {&;;};c 4 amounts to maximizing » ;. , #;;®;; subject to financial constraint (22).

Since ®;; > 0 for i € A, the first-order condition yields the policy in the proposition. The maximum

value of 2 . o @i is W, max;c A (%) Substituting into (A.2), the terms in W, cancel out.

ot
i
Setting the remaining terms to zero determines the function v(W;). [ |

Proof of Lemma 2: From Corollary 1, Vi € Z, x;; = 0 or ®;; = m;1l;, which implies z; ;®;; =

x;m;ll;. Substituting together with ¢; = fW; into (21) and yields
AWy = |(r— B)W; + 211, Y ma:t] dt. (A.3)
€A
Eq. (26) follows from (22) and (A.3) by noting that when (22) is slack, II; = 0.

For (22) to be slack, arbitrageurs must be able to hold x;; = pu; for all ¢ € Z, which requires
Wi > 2%, gmipiu; = We. This also implies y;; = —u; for all 4 € Z, and therefore ®;; = 0 from
(21). ;4 > 0 for all i € A and ®;; = 0 implies II; = 0 (Corollary 1).

If Wy < We, 3i € A such that x;; < pu;, which implies y;+ > u; and ®;; > 0 (from Eq.
(21)). This implies II; > 0 (Corollary 1). Moreover if arbitrageurs invest in all opportunities, their
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position z;; in each of them is given by (35). Substituting into (22) (which holds as an equality)

yields
mth Ht
Wy = 2§4mi,ui <uZ — p= ) =W, — B (A.4)
which implies (25). [ |

Proof of Lemma 3: Egs. (9) and (19) imply that

Qi,t = aiO',? <uz — xi7t> . (A5)

i

For ®;;/m; = II; and z;; > 0, (A.5) implies a;02u;/m; > II;. Solving (A.5) for z;; yields (35). M

Proof of Proposition 3: We first determine Wy for s > t such that W; < W,. Using (25), we

can write (26) as
dW; = (A — BW;)Wedt. (A.6)

To integrate (A.6), we note that

d Wte_At AG_At th
- = — (A= BWy)Wi| =
dt (A —BW,)  (A—BW,)? | dt ( WWe| =0,
where the second step follows from (A.6). Therefore, for s > ¢,

WsefAs B WtefAt
A—BW, A-BW,

Solving for Wy, we find the equations in the proposition. |

Proof of Proposition 5: From Lemma 3 and Lemma 2. |

Proof of Corollary 2: Eq. (38) implies that in the constrained region is

0¢z‘,t . es

= —miB/
oW o [BW;(eds —1) +1]

5 ds. (A.7)

Eq. (39) implies that in the unconstrained region is

004 rm; B (Wc) R / o0 W.eAs N
== — — W, — e "%ds. A8
oW, (B —r)Wy \ W, 0 %WC (eds — 1) +1 (A-8)
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In both cases, 0¢;/0W; is negative and increases as W; increases. To show strict convexity, we

also need to show that 0¢;./0W; is continuous at Wy = W,. Integrating (A.7) by parts, we find

—Trs

e,
WiJo BWi(eds—1)+1

Obi | mi e "
oW, | Wi Bw,(eA —1) +1

0

and therefore,
m;  m; [ re="s

0 1 I
Wi=W, We W, 0 %Wc (GAS — 1) +1

. Al
o, ds (A.10)

Moreover, (A.8) implies that

00i ¢ rm;B [ [ e s
=— 1-3 T e Pds
aVVt Wy=W7 /8 - 0 ZWC (6 — 1) +1
rm;B [ [ A 1— 54
=— 1— - > e "ds. A1l
5- /0 BW, W, (A — 1)1 1 (A11)
Using the definition of A (Eq. (27)), we find that (A.11) coincides with (A.10). [ ]

Proof of Corollary 3: The variable u; affects ¢;; through W, and A = r — 8 + BW,. Since

OW,/0u; is a positive constant, it suffices to show the corollary for W, rather than u;.

To determine the sign of the cross-effect, we examine how the effect of W; on ¢;; depends on
W.. Consider first the constrained region. Since A is increasing in W, (A.9) implies that 0¢; /0W;
is decreasing in W, i.e., 82(;52-7,5/8W63Wt < 0. Consider next the unconstrained region. Eq. (A.8)
implies that 9%¢; 1/OW.0W; < 0 if

0 W.eAs
W, — > 0. A12
oW, By (eAs — 1) 1 1 (A.12)
For a general value of W4,
As A W, — 4 _ W, A
W, — Wee —W,—= LB _5 LB . (A13)

B BWi(eAs—1)+1 B B, (e —1)+1




This expression is increasing in W, since A is increasing in W,.. Thus, in both the constrained and

unconstrained regions, 9%¢; +/OW.0W; = 82<;5i,t JOW,0W,. < 0. To conclude that the effect of W,

on ¢;; is more negative the larger W; is, we also need to show that d¢;;/0W, is continuous at

Wi = We. Eq. (38) implies that in the constrained region

00t o0
) — ZB
ow, /0

We— 53 e "ds.

WteAs
ZWt (GAS - 1) + 1

oW,

Eq. (39) implies that in the unconstrained region

d¢ir  rm;B (Wc>ﬁrr /OO [WC _ Wees
0 _

oW, (B—r\W. \W;

Wc>rfr © 9
0

iB | o
+m <Wt

Egs. (A.14) and (A.15) imply that

As

Oiy _ 0%i
aWC We=W; aWC Wt:WC‘F
zB o) As o]
&S 0= rm / [1 -5 ZS e "Pds — miB/ I €
B—rJo GWe (et —1)+1 0 [ZWC (eAs —
0¢; i
., D oo
Wilw—ws Wi lw,—wr

which holds.

(A.14)

(A.15)

e "ds

We next show that d¢;/0W, > 0. Eq. (A.13) implies that d¢;+/OW, > 0 in the constrained

region if the function

is decreasing in A. Since the denominator is increasing in A, G(A) is decreasing if W; > A/B.

Since 9%¢; +/OW;0W.. < 0, inequality d¢;/0W. > 0 holds also if W; < A/B. Finally, (A.12) and

(A.15) imply 0¢;+/OW, > 0 in the unconstrained region.

Proof of Corollaries 4, 5 and 6: The first result follows from (38) and (39) by observing that

the only asset-specific term in each equation is m;. Using the same observation, we can derive the

second result from (A.7) and (A.8), and the third result from (A.14) and (A.15).

Proof of Corollary 7: Follows from Proposition 5.
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B Risky Arbitrage

Proof of Proposition 6: We proceed as in the proof of Proposition 1, conjecturing the value

function (A.1). The Bellman equation is

max {log(ét) + VW (T‘Wt + 2 Z .@@ﬁl%’i — ét>

Ai tyCt
Ti,t,C .
’LG.A

2 2
+%VWW > (:z»j,tajf - thafj’t> +> (Z g“ci,ta;j;‘jt)

jEA €A jeA \ieA

1 2 WV 2
Vi + SVew | (aﬂv) +3 (08P — BV} =0, (B.1)
jeA jeA

where 1}" denotes the drift of W;. The first-order condition with respect to ¢ yields ¢ = BW,.

Optimization over {Z;}ic.4 amounts to maximizing

2 2

1 . . .

St g 3 (o] - Deetts) + 3 (St 2
ieA t]jeA icA jeA \ieA

subject to the financial constraint (8). The first-order condition yields the policy in the proposition.

The policy {Z;+}ica and the maximum value of (B.2) are linear in W;. Substituting into (B.1), the

terms in W; cancel. Setting the remaining terms to zero, determines the function v(Wy). |

% from (53) into (50) and solving for o/}, we find (54).

Proof of Lemma 4: Substituting o; ;, it

Substituting aZit from (53) into (50) and solving for U%V, we find (57). [ ]

Proof of Proposition 7: When {O'jf, 0}, Kj}jea are small, the highest-order term in (57) is

060

0 kit _u

o O, et o, -

gt =" 09} T '
Wty 49 D keATh oW Ot

where (¢27t,x2’t) denote the functions (¢p+,zk,:) evaluated under riskless arbitrage at the point

(Wi, {ukttrea). The proposition will follow if we show that O'Zﬁ(g is positive, decreasing in W; for

Wy > W, and increasing in Wy for A/B < Wy < W,.
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When W; > Wy, x% ; = MUk, and the denominator in (B.3) is equal to

9y, 2D e MUk MUk ¢ o re~"*
142 o= 4 Zeked ’ —1+/ ds
keAuk koW, Wi 0o BWi(ers—1)+1

Wer Wer /OO re” "’
=1—-—+ = ds >0, B.4
Wi Wi Jo BW,(eAs —1)+1 (B4
where the first step follows from (A.9), and the second from A = BW,.; — (8 —r) > 0. The variable

ug0 - .. . . .. o089 ,

0, ¢ 18 positive and decreasing in W; because (B.4) is positive, Tus, is positive and decreasing in
2J J,

Wy (Corollary 3), and d)’“ ' is negative and increasing in W; (Corollary 2).

When Wy < Wy, (A.9) implies that

a¢?t mz
it d , B.5
ow, Wt / Wt - 1)+ ’ (B.5)

and (A.13) and (A.14) imply that

99y, / Wi— 5
—m;m
5th 7 OWer | BW, (e As—l)—i-l

e "ds. (B.6)

Moreover, since {x) ke satisfy the financial constraint (22), (A.9) implies that

¢k it 2> kea mk.xg t o re= "
1+2)  abig = R A —1+/0 By, (eAs 1)+1d8

keA o

(o] ,',1677‘8
= ds, B.7
/0 %Wt (eAs — 1) +1 (B.7)

and (A.13) and (A.14) imply that

WteAS B
2 2 myx m; e "ds.
%ot = (2ot [ W
Wy — 4
= —Wym;u; B B e "ds. B.8
tmH /0 OWey [ﬁWt (eAs —1)+1 (B2)
Substituting (B.5)-(B.8) into (B.3), we find
o0 Wi _A —Trs
fo 8Wa/c’t [th(etAsfl)—Q—]_] (& ds
Uu;ﬁt = —mimjp; Bo} = —
b ey
fooo (Wt—%g%wl(‘flse‘“—sAs—&-l) e~ TSds
. o Bot 1 [ZWt(e 571)+1} B.9
= MMt 50 r+ (B.9)

o0 re—Ts ?
fO By, (eAs—1)+1 ds
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where the second step follows from A =r — 34+ BW,;. Since the function

is positive for W; > A/B and increasing in W; for W; > A/(2B), and the function

[o.¢] ,,,,671”5
W, —>/ ds
! 0 %Wt (EAS — 1) + 1

is positive and decreasing in Wy, ;' j’? is positive and increasing in Wy for A/B < W; < W.. |

Proof of Proposition 8: The loading sz?t for (i,7) € A is given by (55). When {ajf, of, K?}jeA

are small, the highest-order term in (55) is

f
Fo0 _ 997, 2$?,t‘7j

i7j7t

= . B.10)
oW, o6] (
P14+23 eu ‘rg,t o

The proposition will follow from (47) and the properties of aﬁ? shown in the proof of Proposition

f#0

7, if we show that o it is negative, increasing in W; for W; > W,.;, and decreasing in W; for

Wy < We, and j satisfying (59).

When W; > W, x%vt = ppuy¢ and the denominator in (B.10) is equal to (B.4). Since ajf, x%t,

f¢0
/L'7j’t

9%, . . . .
8;,’: is negative and increasing in Wy, o

and (B.4) are positive, and is negative and increasing

in W;. When Wy < Wey,

niv m;B(Wey — W,
Ty = (%pr j2t>—uj [uj,t— iBWes = W) | (B.11)

. 2
CLJO'j CLJO'j

where the first step follows from (35) and the second from (25). Substituting (B.5), (B.7) and
(B.11) into (B.10), we find

Wiy m;BWe 1

it T T ao? B 1

fo0 _ %59 m;

0t = —2mip;o; W, I+ " 5 — T 1f. (B.12)
173 0 By (eAs—1)+1

The first square bracket is positive since xgt > 0, and increases with W, for j satisfying (59). Since

the second square bracket is positive and increasing in W4, O'Zf ?)t is negative and decreasing in Wj.
J
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Proof of Proposition 9: The correlation between assets (i,4’) € A? is

fo f f¢ fo fé ug _u¢
( Ot Gi) Oy +O—zz’t<ai’,i’t_o- >+Z]EA/{11’} 054t z,jt+2]€AJz]t ?,]t

Piitt = R . (B.13)
0it0i+
When {aj .05, k%}jea are small, the highest-order term in (B.13) is

f¢0 I\ fé0 f¢0 f¢0 @0 ug0 u¢0
( Ot Uz) Oy zt+azz’t (Ui’,i’,t ) +Z]€A/{ll/} UZ]t 4 ]t+2j€AUz],t i',j,t

g;0;

(B.14)

f¢0

The properties of p; ;; follow from (B.14) and the properties of (Uu¢0 it

N ) shown in the proofs of

Propositions 7 and 8. The properties of p; _y ; follow from p; _s; = —p; i+, which is implied from

symmetry. To show the properties of p; _; ¢, we note that symmetry implies that

2 2
f fo fé ¢
‘72‘2 - (Uz zzt) ZjeA/{i} (Ji,j,t) - ZjeA (U:‘fj,t>

22
()

Ky }jea are small, p; —;; is close to one. Using (47), we find that the highest-order

Pi,—it =

When {a

]7 ]7

termin 1 —p; ;4 is

2[<U{ fﬁ) + e (o ,;’5‘2) + 3 ea (o ”,f?”

2
7

(B.15)

(o

The comparative statics of (B.15) are the same as for (B.14). Therefore, the properties of p; _;+

are opposite to those of Piil |

Proof of Lemma 5: When {o/, o

I o, “} jea are small, arbitrageurs long all opportunities and their

first-order condition is (60). Combining with (48) and using (51), we find

\IJM + mth

2 Y
R
a; (Uz',t>

it = Mi [ Wit — (B.16)

where

_ 1 by W IO W
U, = Wt (‘72 Uzzt)ai,t - Z 955,495, Zadt 9jt
JEA/{i} jeA
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Multiplying (B.16) by m; and summing over i € A, we find that the financial constraint (8) holds

as an equality if and only if

i (Wi g
Wi=We, -2y 7 (Wi + i ) (B.17)
icA a; <aﬁ)

For small {U N “}iea, the highest-order term in W, is

J

1
0 _ 0y, fW0 0_fwo 0 _uW0
W, = [(of —olfall = Y0 olfiel =Y el (B.13)
¢ jeA/i} jEA
where
2,0 of 23 29 00k, St U
fWO Jt7 7 d uWo _ keA ktaujt J (B 19)
it L0 9% o %t = 0 9% .
L+ 23 e a i ow, 1+22k€Axlct8Wt
are the highest-order terms in (a£ ZV,U%V) respectively. Since af ¢t <0, o} fg >0, af V0> 0 and
“WO <0, U9, > 0. Lemma 5 follows from (B.17), IT; > 0 and ¥}, > 0. [ |

Proof of Proposition 10: In the region where arbitrageurs are unconstrained, I, = 0. Eq. (B.16)

implies that when {a /{”}je A are small, the two highest-order terms in xz;; are

51957
PO
1 i,t
xi,t = Wi | Uit — 5 |- (BQO)
a;0;
Since alf f? and U“WO are negative and increasing in Wy, and O‘l jt and af WO are positive and

decreasing in Wy, (B.18) implies that WY it is decreasing in Wy, and therefore, :rllt is increasing. Eq.

(B.20) implies that
xllat - wll’,t (\Ijz’ t \Ilgt) ) (B.21)

where (0, a, 1, us) = (04, @i, i, wit) = (0, air, pir, wir ). Noting that d)?}t/ml- = gb%t/mi/ and a:?vt =

wiug e, and using (B.3), (B.10), (B.18), (B.19) and (B.21), we find

5 [ N ()

1 M T fWO }: ug0 _uWo

xi,t_xz”,t_ 9 960 +< > ljt zgt Ot
arWi | 495 O jea

€A ,U/Uk- LW, 8Wt JEA

(B.22)
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If m; > my and O'Z-f = aif,, the first term in the curly bracket is zero. Since the second term is

negative and increasing in W4, x}t — :c%,t is increasing in Wy. If m; = my; and U{ > 05, the second
b b

term in the curly bracket is zero. Since the first term is negative and increasing in W, x%t — :c}, ‘

is increasing in W;. In both cases, 6w}’t JOW; > 6%'11/ ./OW; > 0, i.e., changes in arbitrageur wealth

impact more strongly their position in opportunity (i, —i) than (i, —i’).

In the region where arbitrageurs are constrained, II; > 0. Eq. (B.16) implies that when

{ajf ;05 m;‘} jeA are small, the two highest-order terms in x;; are

2
R _ 2
U, + my;ll, (Ui,t> g;
1 _ 9 1
Tig =i Uit —— 5 — |1+ —"5—
a;0; o;

The comparative statics with respect to m; follow by considering the highest-order term

0o _ ‘ m; 11
Lip = Hi | Wit — w0l )’

i0;

i.e., as in the case of riskless arbitrage. (The ambiguous comparative statics with respect to o

follow by considering the term in the next order.)
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(B.23)
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