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Abstract

Most GARCH-type models follow Engle’s (1982) original idea of modelling the volatility of asset returns

as a function of only past information. We propose a new model, which retains the simple GARCH struc-

ture, but describes the volatility process as a mixture of past and current information. We show how the new

model can be interpreted as the special case of a Stochastic Volatility (SV) model, which provides therefore

a link between GARCH and SV models. We show that we are able to obtain better volatility forecasts than

the standard GARCH-type models; improve the empirical fit to the data, especially in the tails of the dis-

tribution; and make the model faster in its adjustment to the new unconditional level of volatility. Further,

we offer a much needed framework for specification testing as the new model nests the standard GARCH

models.
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1 Introduction

Volatility is widely used as a proxy for the risk associated with a financial asset, see e.g.

French et al. (1987). Reliable estimation and forecasting of volatility is therefore crucial

for many financial activities, such as risk management, portfolio choice and asset pricing.

There are several main approaches to modelling the volatility of discrete financial time

series: GARCH models (Engle, 1982; Bollerslev, 1986; Ding et al, 1993; Hansen et al., 2011,

among others), Stochastic Volatility (SV) models (see Shephard, 2008 for overview), and

hybrid models, e.g. Meddahi and Renault (2004). A main conceptual difference between

the above approaches stems from the information structure they incorporate. Univariate

GARCH models assume that the volatility of asset returns, σt, is a function of past infor-

mation only, i.e. σt is Ft−1−measurable, where Ft−1 is the sigma-algebra induced by the

history of returns up to time t−1. SV models assume that σt is Gt−measurable, where Gt is

the sigma-algebra induced by the history of returns as well as by the history of unobserved

random shocks up to time t. The difference in the incorporated information structure is

also in their nature: while GARCH models incorporate only past internal information (i.e.

information generated only within the model itself) and are therefore deterministic, SV

generate a stochastic volatility process by allowing for external information in the form

of unobserved random shocks that are independent from the shocks governing the re-

turns process. As a result, SV models can be more flexible in fitting the data, however this

comes at the cost of higher complexity involved in their estimation and inference. Con-

trasting with SV models, GARCH models are observation-driven. Hence they come with

the advantage of having available many estimation methods, Quasi-Maximum Likelihood

(QML) being the most popular, which accounts for their wider use among practitioners.

First remarked upon by Politis (2007), by not using all available internal information,

in particular the current return, GARCH models make an inefficient use of information

when forecasting the volatility of returns. An important implication of this is that GARCH
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models are poorly suited for situations of rapid changes in financial markets, for example

when volatility changes rapidly to a new level, see e.g. Andersen et al. (2003), and Hansen

et al. (2011). Until now it was assumed that all volatility models can be classified as either

parameter-driven or observation-driven (see e.g. Cox, 1981 and Sheppard, 1996), with

a clear separation between the two. Since most GARCH models are observation-driven,

it comes with a necessary condition that the process is modelled strictly in terms of the

past observed information. Hence this limitation of GARCH models was believed to be

inherent and unavoidable.

In this paper we show that it is possible to efficiently utilize all available internal infor-

mation in GARCH models, in particular incorporating the current return. We demonstrate

that by doing so, we (i) can account for rapid changes in the unconditional level of volatil-

ity as the conditional distribution of returns has a time-varying kurtosis; (ii) outperform

standard GARCH models in terms of both short-run (1 and 5 days ahead) and long-run

(10 and 15 days ahead) out-of-sample volatility forecasts; (iii) provide a better empirical

fit to the data, especially in the tails of the distribution; (iv) provide a conceptual link be-

tween SV and GARCH models; and (v) offer a much needed framework for specification

testing of the standard GARCH models, which are nested in our framework.

To put things into context, consider the following model

rt = εtλt, λ2
t is Ft −measurable, (1)

where rt is the return series, εt are i.i.d. random variables such that E (εt) = 0, E (ε2t ) = 1,

and Ft is the information set available at time t. Here we model the volatility as a mixture

of past as well as current information, i.e. λt is Ft−measurable. Compared to GARCH

models, we use all information up to time t instead of time t−1. Compared to SV models,

Ft contains only one source of randomness shared by the returns and volatility processes,

which will allow us to retain a QML framework. The new model therefore can be thought
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of as a link between GARCH and SV models, as it nests the GARCH model as its special

case, yet models the volatility process in the spirit of SV models where the two sources of

randomness are perfectly correlated. While our model combines the advantages of both

GARCH and SV models in a unified framework, it is not strictly a GARCH nor a SV model,

but rather it is in a new class of its own. We call this new model the “Real-time GARCH”

model (RT-GARCH for short), indicating the fact that the most “current” information is

contributing to the volatility process.

An important advantage of this framework is that we allow the shape of the conditional

distribution of returns to be time-varying. This has two main implications. Firstly, unlike

GARCH models where the conditional kurtosis of the error terms simply translates into

the kurtosis of the returns, our model’s conditional kurtosis is time-varying. Secondly, the

conditional density of returns is no longer a scaled normal density even when the error

term has a Gaussian density. Our density function has an extra shape parameter which

determines the “peakedness”, and/or thickness of the tails, of the returns distribution.

This allows our model to be better capture tail behaviour of the returns. This shall play an

important role for the precision of our out-of-sample Value-at-risk (VaR) and short- and

long-run volatility forecasts.

Politis (2007) makes the first investigation of the implications of information loss for

forecasting volatility. He develops a novel model-free normalizing and variance stabiliz-

ing (NoVaS) transformation of the initial time series of returns, by incorporating the cur-

rent squared returns into the conditional variance process in order to improve volatility

forecasts. Being a model-free specification, parameter estimates and statistical properties

are not available. Thus direct comparison of the theoretical implications of this specifica-

tion with existing discrete-time volatility models is not possible, and the important ques-

tion of whether including current information in a more structured model would provide

any improvements over the standard GARCH models was not addressed. We answer this

question by studying the statistical properties and the empirical performance of the RT-
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GARCH model. We first show that it is possible to incorporate current information into

GARCH-type models while retaining interpretation, and a good description of the key

characteristics of financial data. We show that the new information, i.e. the current real-

ization of the current return (or some function of thereof), can be viewed in two ways: as

a change in the information set, and as providing the conditional density of returns with

an extra shape parameter, making it therefore time-varying.

In our empirical study, we estimate our model on three datasets: IBM, GE and S&P

500 daily returns which span from the 2nd of January 1998 (28th of January 2003 for

S&P500) till the 1st of December 2016. We find that accounting for current information

in the volatility process plays an important role along several dimensions. Firstly, the RT-

GARCH model outperforms standard GARCH-type models in terms of producing better

short-run (1 and 5 day ahead) and especially long-run (10 and 15 days ahead) out-of-

sample volatility forecasts. In particular, we compare 1-, 5-, 10- and 15-step ahead volatil-

ity forecasts with those of the GARCH(1,1) and GARCH(1,2) with standard normal and

Student-t errors, APARCH(2,2) with Student-t errors, as well as NoVaS methodologies of

Politis (2007). To evaluate the competing forecasts, we perform Hansen’s (2011) Model

Confidence Set (MCS) test and provide evidence that the RT-GARCH models always lie

in the MCS for all horizons, while standard GARCH models are only occasionally in-

cluded in the MCS for some datasets and/or loss functions. In particular, the MCS always

contains the RT-GARCH model, and only for some datasets, the APARCH model with

Student-t innovations. Moreover, the baseline RT-GARCH model always outperforms the

standard GARCH(1,1) model for all horizons across all datasets. Hansen’s (2005) Test for

Superior Predictive Ability (SPA) confirms these results by showing that the RT-GARCH

model (or variation of thereof) is not outperformed by any of the competing models. We

also perform an evaluation of the forecasting performance of all models on 2 different

subsamples: pre- and post-crisis periods. We show that during the crisis period, the RT-

GARCH with leverage and the RT-GARCH with leverage and feedback models outper-

5



form all other models for all stocks and all horizons. This result emphasizes that during

turmoil times, accounting for leverage and especially allowing for a time-varying kurtosis

is crucial for getting precise forecasts. Further, using VaR as an alternative risk measure-

ment loss function, we show that our model has the correct conditional and unconditional

coverage when compared to the other models, and especially when compared to the stan-

dard GARCH(1,1) model. Secondly, being a generalization of the standard GARCH(1,1)

model, the RT-GARCH model provides a better fit to the data when compared to the stan-

dard GARCH(1,1) model along several important dimensions. In particular this is most

evident in the tails of the standardized residual density implied by the estimated model.

Lastly, we show how the RT-GARCH model can be used for specification testing of the

standard GARCH models. This specification test can be interpreted as a test for constant

conditional kurtosis against a time-varying one. Applied to IBM, GE and S&P500 data,

we find that all of them have a time-varying conditional kurtosis.

The remainder of the paper is structured as follows. In section 2 we introduce the

RT-GARCH model and provide an interpretation of the model as well as its relation to

GARCH and SV models. In section 3 we present the main results, including the condi-

tional density function, and the strict and weak stationarity conditions. In section 4 we

address the issue of leverage in the RT-GARCH model. Section 5 discusses some results

of the estimation theory and the specification test. Section 6 shows how we use the RT-

GARCH model to get l-step ahead volatility forecasts. In section 7 we provide an applica-

tion to daily IBM, GE and S&P500 data. Section 8 concludes. All proofs are presented in

the Appendix.
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2 RT-GARCH

2.1 Interpretation and relation to GARCH models

In this section we formally introduce the RT-GARCH model. In order to analyze the role

of current information for volatility modelling, we first need to define what is to be taken

as “current information”. Politis (2007) assumes that current information is represented

by the current squared return. However, this poses a problem: if one is to forecast the

future conditional variance at time t + 1, the future return, rt+1, will be required but is

unobserved. One way to bypass this problem is to consider some function of the current

return that won’t require the knowledge of unobserved future returns when forecasting. It

turns out that one possible candidate for doing so is the current return scaled by its volatil-

ity. In GARCH-type models this translates directly into the error term, εt, which generates

the return process. This solves the forecasting infeasibility issue as only the second condi-

tional moment of the error term will be required for forecasting, which is known for all t,

provided the standard moment conditions on the error term. More precisely, consider the

following joint process (rt;λ
2
t ):

rt = λtεt (2)

λ2
t = α + βλ2

t−1 + γr2
t−1 + ϕ

r2
t

λ2
t︸︷︷︸

=ε2t

, (α, β, γ, ϕ) ≥ 0, (3)

where rt is the return series, εt are i.i.d. random variables with a density function fε (·)

such that E (εt) = 0, E (ε2t ) = 1. The true parameters are denoted by α0, β0, γ0 and ϕ0. This

model nests the standard GARCH (1,1) model which can be obtained by setting ϕ = 0.

We label the new volatility process λ2
t instead of σ2

t , as eq.(3) does not correspond to the

conditional variance of returns in this system of equations, i.e. var[r2
t |Ft−1] 6= λ2

t as λt

is not independent of εt any longer. Note also that the choice of a particular function
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of εt, i.e. ε2t , is only one of many possible ones subject to the nesessary condition that

λ2
t > 0. In particular, functions |εt|, ε4t , among others, are possible. Our decision to choose

a squared error term will become apparent later when we discuss the interpretation and

the implications for the conditional distribution of returns.

Although not directly related to the MIDAS approach of Ghysels et al. (2005, 2006), as

we use only one frequency, it shares a similar intuition in the sense of assigning different

and, in our case, time-varying weights to returns on different days. In particular, it can be

shown that eq.(3) can approximately be written in the following way:

λ2
t ≈

ϕr2
t

bt−1

+
∞∑
j=1

(
βjϕ

bt−1−j
+ γβj−1

)
r2
t−j, (4)

where bt−1 = α+βλt−1+γr2
t−1. The derivation can be found in the Appendix. Compared to

the standard GARCH models, the weights are time-varying and depend on past volatility,

which can be approximately taken to be bt−1. The intuition of this weighting scheme is as

follows. For the current return r2
t , the weight is inversely proportional to bt−1, i.e. the

weight is bigger for a smaller past return and is smaller if the past return is large. For

any r2
t−j , j ≥ 1, the weight consists of two parts: the usual "GARCH weight", given by

γβj−1, and an additional time-varying weight (βjϕ)/bt−1−j which assigns an extra weight

if a particular realization of rt−j is in the tails of the distribution.

In order to understand what difference it makes to enlarge the information content

of the volatility process, consider the following thought experiment which we have bor-

rowed from the presentation of the paper by Hansen et al. (2011). Suppose that σ2
t is such

that the volatility is σt = 20% for t < T , but then suddenly jumps to the new level of

σt = 40% for t ≥ T . The implication for the GARCH(1,1) model is that for any k ≥ 0 it
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holds that

E
(
r2
T+k

)
= E

(
σ2
T+k

)
= α + γE

(
r2
T+k−1

)
+ β

[
α + βE

(
σ2
T+k−1

)
+ γE

(
r2
T+k−1

)]
= · · · =

=
α

1− β
+ α

∞∑
j=0

βjE
(
r2
T+k−1−j

)
=

α

1− β
+ γ

1− βk

1− β
(40%)2 + γ

βk

1− β
(20%)2.

Using similar derivation steps for the RT-GARCH model with the important exception

that E (r2
t ) = E (λ2

t ) + ϕη, η = E (ε4t )− 1 we similarly have:

E(r2
t+k) =

α + ϕ(3− 2β)

1− β
+ γ

1− βk

1− β
(40%)2 + γ

βk

1− β
(20%)2,

where we took εt ∼ N (0, 1). In this thought experiment we ask the following question:

how many days following the jump will it take for the volatility process to adjust to its

new level? The answer is presented in Figure 1(a).

(a) (b)

Figure 1: (a) Time scale of the volatility adjustment. For both graphs the parameter vector
[ α, β, γ, ϕ] is set to [ 0, 0.92, 0.073, 0.035 ] for the RT-GARCH model, while [α, β, γ] =
[0, 0.95, 0.045] for the standard GARCH(1,1) model. (b) News impact curves for different values of ϕ. For
both graphs parameter values are in line with the ones from the estimated daily GE stock returns.
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For the standard GARCH(1,1) model it takes approximately 100 days (more than 3

months) to approach the level of 39%. For the RT-GARCH model it takes a little less than

40 days to adjust to the new level of volatility. Although still slow the RT-GARCH model

is at least two times faster in its speed of adjustment to the new level of volatility after a

sudden jump when compared to the standard GARCH(1,1) model.

Another measure of how new information affects the volatility of returns is given by

the “news impact curve”, as defined by Engle and Ng (1993). For the RT-GARCH model

the news impact curve is given by the following equation:

E
[
r2
t+1|Ft

]
= α + ϕκ+ β

b+

√
b

2
+ 4ϕr2

t

2

+ γr2
t , (5)

with κ = E [ε4t ] and b = (α + βϕ + κγϕ)/(1 − (β + γ)) being the unconditional level of

bt−1 = α+ βλ2
t−1 + γr2

t−1. Note that this news impact curve is no longer simply a quadratic

function of r as in the case of standard GARCH(1,1) model. However, for reasonable val-

ues of the parameter values the last term in eq.(5) dominates. In Figure 1(b), we compare

news impact curves of the RT-GARCH model for different values of ϕ with the news im-

pact curve of the standard GARCH(1,1) model, which corresponds to the case of ϕ = 0.

For a fixed value of ϕ the volatility in the RT-GARCH model responds much more to ex-

treme news when compared to the standard GARCH(1,1) model. For larger values of ϕ

this response becomes even larger, see eq.(4) for the weighting interpretation. In our base-

line model good and bad news have the same weighting. We address the leverage and

feedback issue and how it can be incorporated in the baseline model in Section 4.
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2.2 Relation to SV models

To see how our model relates to SV models we write the simplest possible RT-GARCH

and SV models, which is enough to demonstrate the point. Consider the following:

rt = λtεt

λ2
t = α + ϕε2t ,

εt ∼ iid(0, 1)

 RT −GARCH

rt = σtηt

σ2
t+1 = w + γzt+1,

zt ∼ iid(0, σ2
z), ηt ∼ iid(0, σ2

η),

corr(zt+1, ηt) = ρ ∀ t


SV

After simplifying both models as above, the difference becomes immediately clear. SV

models assume that the process for returns, rt, is driven by two random shocks, zt and ηt.

A non-zero contemporaneous dependence between shocks is allowed, which is thought

to pick up the leverage effect, see Yu (2005) for the definition of the leverage effect in SV

models. Note that the inter-temporal dependence between shocks can also be allowed, see

also Yu (2005) for a discussion, however this can lead to returns that are not martingale

difference sequences and therefore not consistent with the efficient market hypothesis.

The RT-GARCH model assumes that εt, a single random shock, is common to both rt and

its volatility process λt. Our model is therefore a special case with ρ = 1 as the correlation

of the shocks in the SV framework. This common shock only contributes to the volatility

whenever it is large in absolute value. One therefore can think about it as really “bad”

(in terms of both magnitude and sign) news that will be immediately incorporated in

the volatility process. As mentioned before however, the RT-GARCH model is neither a

GARCH nor a SV model, but something in between. To formally define where in-between

our model lies, one would need to derive the continuous-time limit, which is currently left

for future research.
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3 Main Results

In this section we derive some statistical properties of the new model. We start with the

unconditional moments of r2
t and λ2

t . From eq.(2)-(3) the unconditional expectations of r2
t

and λ2
t are given by:

E[r2
t ] = α + βE[λ2

t−1] + γE[r2
t−1] + ϕE[ε4t ]

and

E[λ2
t ] = E[α + βλ2

t−1 + γr2
t−1 + ϕε2t ] = α + βE[λ2

t−1] + γE[r2
t−1] + ϕ. (6)

This now gives us a link between the first moments of λ2
t and r2

t :

E[r2
t ] = E[λ2

t ] + ϕ(E[ε4t ]− 1). (7)

When, for instance, εt are i.i.d. N (0, 1) random variables, the above relationship simply

becomes E[r2
t ] = E[λ2

t ] + 2ϕ. We next derive the conditional density of returns together

with the general formula for the jth conditional moment, followed by a discussion of strict

and weak stationarity conditions for r2
t and λ2

t . All proofs for this section’s results can be

found in the Appendix.

Theorem 1. Let εt be i.i.d. symmetric around zero random variables such that E(εt) = 0 and

var(εt) = 1; and let (rt, λ
2
t ) evolve according to eq.(2)-(3). Denote by Ft−1 := σ(rt, s ≤ t − 1)

the σ-algebra induced by the history of returns up to time t − 1. Denote the parameter vector by

θ = (α, β, γ, ϕ)′ and the true parameter vector by θ0 = (α0, β0, γ0, ϕ0)′. Then the conditional

probability density function of the return series, fr(r), is given by

fr(r|Ft−1) =
r

d(r, bt−1, θ)
√
b2
t−1 + 4r2ϕ

fε(d(r, bt−1, θ)), (8)
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where fε(·) is the probability density function of εt, while d(r, bt−1, θ) and bt−1 are given by the

following equations

d(r, bt−1, θ) =


√√

b2t−1+4r2ϕ−bt−1

2ϕ
, for ϕ 6= 0

r/
√
bt−1, for ϕ = 0

(9)

with bt−1 = α + βλ2
t−1 + γr2

t−1. Note that εt = d(rt; bt−1, θ0). Moreover,

lim
r→0

r

d(r, bt−1, θ)
=
√
bt−1 and lim

r→ 0
fr(r|Ft−1) =

1√
bt−1

fε(0).

The conditional cumulative distribution function of returns is given by:

F (r|Ft−1) = Fε (d(r, bt−1, θ)) ,

where Fε(·) is the cdf of εt. The conditional jth moment of returns, where j ∈ Z, is given by the

following formula:

E
[
rjt |Ft−1

]
= b

j/2
t−1

[
E
(
d(r, bt−1, θ)

j
)

+
1

2

jϕ

bt−1

E
(
d(r, bt−1, θ)

j+2
)]
. (10)

Remark 1. From eq. (10) it can be noticed that for returns to be a martingale difference

sequence, it is required that the third moment of εt is also zero (hence our assumption on

the symmetry of the error term in the Theorems). Although definitely a stronger require-

ment than just E(εt) = 0, we believe it is still a realistic assumption as it will hold for a

variety of distributions for εt. For instance, this requirement does not rule out the densities

that are multimodal as long as they are still symmetric. In particular, it will hold for the

commonly used Gaussian or Student-t distributions for εt.

Remark 2. Note that the distribution related the conditional density in eq.(8) has now

a time-varying kurtosis. Therefore, the parameter ϕ can be thought of as an extra shape

parameter, representing the thickness of the tails. As a special case this distribution nests
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the standard Normal distribution with a constant kurtosis of 3.

Remark 3. Conditional on Ft−1, rt is an odd function of εt, since εt is an odd function of

εt and λt is an even function of εt. It then automatically follows that the conditional, and

hence unconditional distribution of rt, is symmetric.

Remark 4. The conditional density of the RT-GARCH model in eq.(8) nests the con-

ditional density of the standard GARCH(1,1) model as its limiting case at r = 0. The

intuition is as follows: standard GARCH(1,1) model is a special case of the RT-GARCH

model whenever ϕ = 0, then d(r) simplifies to r/
√
bt−1 and eq. (8) boils down to the stan-

dard GARCH(1,1) density, or εt = 0, which is equivalent to the condition of rt = 0. In this

case the limit of eq.(8) as r → 0 is again the standard GARCH(1,1) density. Similarly, the

conditional moments in eq.(10) nest the GARCH(1,1) model’s conditional moments as its

special case.

Remark 5. It is also interesting to note another important difference with the GARCH(1,1)

model for conditional moments of order j > 2. Recall that for the standard GARCH(1,1)

model the standardized conditional kurtosis of returns is just

E
[
r4
t |Ft−1

]
/
(
E
[
r2
t |Ft−1

])2
= b2

t−1E
[
ε4t
]
/b2
t−1 = E

[
ε4t
]
,

meaning it is simply the standardized kurtosis of the error term, and therefore constant

over time. For the RT-GARCH model we have

E
[
r4
t |Ft−1

]
/
(
E
[
r2
t |Ft−1

])2
=
b2
t−1E [ε4t ] + 2ϕbt−1E [ε6t ] + ϕ2E [ε8t ]

(bt−1 + ϕE [ε4t ])
2 ,

which makes it now time-varying. This explains why we opted to call ϕ an additional

shape parameter, as it has a direct relationship to the standardized conditional kurtosis of

the returns. In section 5 we discuss how this can be used for specification testing. Further

note that the conditional distribution of the return series is no longer just the scaled ver-

sion of the standard normal density. In particular, it now has an extra shape parameter ϕ,
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which, as we will describe below, will determine the degree of peakedness and/ or thick-

ness of the tails of the distribution. More precisely, the return process described by the

RT-GARCH with normal innovations is now able to account for heavier tails compared to

the standard normal distribution. To highlight this point even further, Figure 2 displays

the probability density function of the RT-GARCH with fε(·) ∼ N (0, 1) against the p.d.f. of

the standard normal distribution and demonstrates that the density of the general model

is also able to model heavier (than the standard normal) tails of the distribution without

resorting to an arbitrary distribution of the error term.

Figure 2: Conditional probability density function for different values of unconditional volatility. The parameter
vector θ = [ α, β, γ, ϕ]′ is set to [ 0.003, 0.9, 0.04, 0.02 ]′, which are typical parameter values.

15



Figure 3: Conditional probability density function for different values of ϕ. The parameter vector θ =

[ α, β, γ, ϕ]′ is set to [ 0.003, 0.9, 0.04, 0.02 ]′, which are typical parameter values.

The reason as to why the RT-GARCH model is able to reproduce heavy tails of the re-

turns conditional distribution stems from the fact that the additional parameter ϕ controls

for the thickness of the tails of the corresponding distribution as the conditional kurtosis

in the new model is time-varying. From the Figure 3 we can see that the larger the value of

ϕ is the heavier are the tails of the distribution. Besides controlling for the thickness of the

tails of the distribution, parameter ϕ allows for the adjustment of the volatility estimate,

either up or down depending on the “sign” of the news, allowing the conditional variance

process to be more dynamic.

After some preliminary graphical results we now turn to describing some further sta-

tistical properties of the RT-GARCH model. In particular, we derive conditions for the

joint process (rt, λ
2
t ) to be strictly stationary. Establishing this result is important for de-

veloping estimation theory for the QMLE. In particular, establishing the strict stationarity

conditions is important for proving that the joint process (r2
t , λ

2
t ) is geometrically ergodic
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and β-mixing (for proofs of these results see Smetanina (2017b)), which in turn is neces-

sary for establishing the asymptotic normality of the QMLE.

Theorem 2. Let εt be i.i.d. symmetric around zero random variables such that E(εt) = 0 and

var(εt) = 1; and let (rt, λ
2
t ) evolve according to eq.( 2)-(3). Let α, β, γ > 0, and ϕ 6= 0. If the

following conditions are satisfied

−∞ 5 E log
∣∣β + γε20

∣∣ < 0 E
(
log
∣∣α + ϕε20

∣∣)+
<∞, (11)

then the process (rt, λ
2
t ) is strictly stationary.

We next establish the weak stationarity conditions for r2
t and λ2

t processes. These re-

sults will be later used to derive the forecasting formulae for the conditional variance of

returns. In addition, the unconditional level of volatility is needed if one chooses to use

variance targeting for the estimation of the parameter vector.

Theorem 3. Let εt be i.i.d. symmetric around zero random variables such that E(εt) = 0 and

var(εt) = 1; and let (rt, λ
2
t ) evolve according to eq.( 2)-(3). Then under the following conditions:

 β + γ < 1 (case 1)

α + ϕ+ γϕ (E[ε4t ]− 1) > 0

or  β + γ > 1 (case 2)

α + ϕ+ γϕ (E[ε4t ]− 1) < 0

the process λ2
t is weakly stationary and its first unconditional moment is given by

E[λ2
1] =

α + ϕ+ γϕ (E[ε4t ]− 1)

1− (β + γ)
. (12)

Given the relationship, described in eq.(7), between E[r2
t ] and E[λ2

t ], we can write down

the conditions for weak stationarity of r2
t .
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Theorem 4. Let εt be i.i.d. symmetric around zero random variables such that E(εt) = 0 and

var(εt) = 1; and let (rt, λ
2
t ) evolve according to eq.( 2)-(3). Then under the following conditions:

 β + γ < 1 (case 3)

α + ϕE(ε4t ) + ϕβ (1− E(ε4t )) > 0

or  β + γ > 1 (case 4)

α + ϕE(ε4t ) + ϕβ (1− E(ε4t )) < 0

rt is weakly stationary and its second unconditional moment is given by

E[r2
1] =

α + ϕE(ε4t ) + ϕβ (1− E(ε4t ))

1− (β + γ)
. (13)

In addition it also holds that:

cov(rt, rs) = 0, t 6= s.

Let us now turn to the unconditional fourth moment of the return series rt,E[r4
1], which

is an important measure of the tail behaviour of the return distribution. Detailed deriva-

tions are presented in the Appendix, here we present the resulting expression for E[r4
1].

Theorem 5. If the process (rt, λ
2
t ) evolves according to eq. (2)-(3) and εt are symmetric

around zero i.i.d. random variables such that E (εt) = 0 and var(εt) = 1, then rt is fourth moment

stationary if

γ2 <
1

E[ε4t ]
, (14)

with the unconditional fourth moment given by

E[r4
1] =

ξ1 + E[λ2
1]ξ2 + 2βγµ4[E[λ2

1]]
2

1− γ2µ4

,

where µj := ϕE[εjt ] and constants ξ1 and ξ2 are given by ξ1 = α2µ4 + µ8 + 2αµ6 + 4ϕγ(αµ4 +

βµ4 + µ6) > 0 and ξ2 = µ4(2αβ + β2 + 2αγ + 2µ6(γ + β)) > 0 and E[λ2
1] is given by eq. (12).
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Remark 6. In the case of Gaussian error terms, condition (14) simply becomes γ2 < 1
3

which is exactly the same as in the standard GARCH(1,1) case.

4 Leverage and volatility feedback effects

The RT-GARCH model described by eq. (2)-(3) has no leverage effect, meaning that when

errors are symmetric about zero, E(rt) = 0 and cov(r2
t , rj) = 0 ∀j. However, there is

well documented empirical evidence, see e.g. Black (1976), Christie (1982), Engle and Ng

(1993), that many financial time series exhibit the leverage effect, i.e. the contribution to

the volatility of negative shocks to the stock prices is far greater than that of the positive

shocks of the same magnitude. As a result of this empirical evidence, most discrete and

continuous-time volatility models were extended to incorporate this feature. For discrete

time models see Nelson (1991), Engle and Ng (1993), Glosten et al.(1993) among others.

For continuous-time models, see Christie (1982), Yu (2005), Bandi and Renò (2012), Aït-

Sahalia et al. (2013) and Wang and Mykland (2014). For fully nonparametric way of

estimating and testing the leverage hypothesis, see also recent work by Linton et al. (2016).

We proceed by incorporating the leverage effect in the fashion of Glosten et al. (1993),

i.e. by acknowledging the different effect of positive and negative news on the conditional

variance of returns. Note however that, unlike for all standard GARCH-type models, the

most recent information in our case is represented by current shocks εt. We therefore refer

to “leverage effect by differentiating the effect of positive and negative values of εt on λ2
t .

Therefore the baseline model in Section 2 can be extended to account for leverage effect as

follows:

rt = λtεt
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and

λ2
t = α + βλ2

t−1 + γr2
t−1 + ϕ1ε

2
t1(εt>0) + ϕ2ε

2
t1(εt≤0).

It is also interesting to differentiate between the effect of positive and negative values

of past returns on the conditional volatility. In the standard GARCH-type models this is

referred as “leverage effect” as this would be the most recent information effecting the

conditional volatility. Given the differently defined leverage effect in our model we refer

to the different effects of the past postive and negative returns on conditional variance

as “feedback effect”. More precisely, the RT-GARCH model with leverage and feedback

effects is given by

rt = λtεt (15)

and

λ2
t = α + βλ2

t−1 + γ1r
2
t−11(rt>0) + γ2r

2
t−11(rt≤0) + ϕ1ε

2
t1(εt>0) + ϕ2ε

2
t1(εt≤0). (16)

In Figure 4 we compare the news impact curves of the GJR-GARCH(1,1) model of

Glosten et al.(1993) with the RT-GARCH model with leverage and the RT-GARCH model

with leverage and feedback, all estimated on the daily IBM data. For both specifica-

tions of the RT-GARCH model, volatility tends to respond more to negative news than

in GJR-GARCH model. Interestingly, the RT-GARCH model with leverage and feedback

responds slower to negative news than the RT-GARCH just with the leverage effect.
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Figure 4: The figure displays the news impact curves for three models, estimated on the daily IBM data.

All theorems in section 3 hold for both extensions with slight modifications. For reasons

of brevity we defer these to the Supplementary Material for this paper.

5 Outline of the Estimation Theory

In this section we discuss some results of the QMLE analysis. We denote by θ = (α, β, γ, ϕ)′

the parameter vector and the corresponding true parameter vector by θ0 = (α0, β0, γ0, ϕ0)′.

For the purpose of estimation we adopt a Gaussian specification, such that the log-likelihood

function can be written as follows:

LT (θ) =
1

T

T∑
t=1

lt(θ),

where

lt(θ) = −1

2
log(2π)− 1

2
d2
t (r, bt−1, θ) + log

(√
bt−1(θ) + ϕd2

t (r, bt−1, θ)

bt−1(θ) + 2ϕd2
t (r, bt−1, θ)

)
,
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with bt−1(θ) = α + βλ2
t−1 + γr2

t−1, and d2
t (r, bt−1, θ) is given in eq.(9). Note also that if ϕ is

set to zero we are again back to the standard GARCH(1,1) log-likelihood function. The

QMLE of θ is then defined as any measurable solution θ̂T of θ̂T = arg maxθ∈Θ LT (θ), where

Θ denotes the parameter space. Given that the RT-GARCH(1,1) model nests the standard

GARCH(1,1) model, it can be expected that the asymptotics theory for QMLE will be

a generalization of some sort for the standard GARCH(1,1) model. In fact, this turns

out to be true, however the analysis is non-trivial and requires a lengthy derivations. In

addition, we believe that the entire analysis is beyond the scope of this paper as it presents

an interest of its own. The details therefore can be found in Smetanina (2017b), and here

we provide only a brief discussion of the results. Importantly, the joint process (r2
t , λ

2
t )

remains to be a Markov chain and therefore the theory for Markov models, developed

by Meitz and Saikkonen (2008) applies. This allows one to establish the ergodicity and

β−mixing of the process. After the dependence structure is established, in Smetanina

(2017b) we show that the strong consistency of θ̂ can be established by adopting the theory

by Francq and Zakoïan (2004). In addition, we also show that the score function is still a

martingale difference sequence, therefore the martingale CLT, see e.g. Hall and Heyde

(1980), can be applied to show:

√
T
(
θ̂ − θ0

)
d−→ N (0, Vθ) ,

where Vθ ≡ A−1BA−1 and

A = − 1

T
Eθ0

[
∂2 logLT (θ)

∂θ∂θ′

]
and B =

1

T
Eθ0

[
∂ logLT (θ)

∂θ

∂ logLT (θ)

∂θ′

]
.

The exact expressions for Vθ can be found in Smetanina (2017b). Finally, provided that

θ̂
p−→ θ0 and V̂θ

p−→ Vθ, the feasible version is given by:

V̂
−1/2

θ̂

√
T
(
θ̂ − θ0

)
d−→ N (0, I) .

22

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2809055&download=yes
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2809055&download=yes
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2809055&download=yes
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2809055&download=yes


We finish this section by suggesting that the new model can be used for specification

testing of the standard GARCH models. In particular, one can consider testing the follow-

ing null hypothesis:

H0 : ϕ = 0

versus an alternative hypothesis HA that H0 is false. This test can be interpreted as the test

for constant standardized conditional kurtosis of the returns against an alternative of a

time-varying conditional kurtosis. Since this test is for nested models, it is straightforward

to use already computed likelihood quantities to calculate the Likelihood Ratio test LR =

−2 ln(LT (θ?)/LT (θ))
d−→ χ2

1, where θ = (α, β, γ, ϕ)′, θ? := {θ \ ϕ}. Although theoretically ϕ

can take negative values, see Theorems 3 and 4 for restrictions, in practical applications the

easiest way to ensure that λ2
t is always positive is to restrict all parameters to be positive,

i.e. ϕ ≥ 0. In this case the test is on the boundary of the parameter space for ϕ, and the

Likelihood Ratio test has a nonstandard distribution, see Francq and Zakoïan (2009) for

details.

6 Volatility Forecasts with RT-GARCH

We now focus on volatility forecasting using the RT-GARCH model. The forecasting exer-

cise is very similar to obtaining volatility forecasts with the standard GARCH(1,1) model

except for some slight differences. Recall that for the forecasting exercise we need the

following two equations:

E[λ2
t |Ft−1] = α + βλ2

t−1 + γr2
t−1 + ϕ (17)

and

E[r2
t |Ft−1] = E[λ2

t |Ft−1] + ϕ(E[ε4t ]− 1), (18)
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where eq. (17) is the expectation of the conditional variance of the process and eq. (18) is

obtained by recursively substituting eq. (3) into the squared eq. (2) and taking expecta-

tions. Then k-step ahead volatility forecast is given by:

Theorem 6. Let the process (rt, λ
2
t ) evolve according to eq. (15)-(16) and εt is symmetric

around zero i.i.d. random variables such that E (εt) = 0 and var(εt) = 1. Then the k-step ahead,

k ≥ 1, volatility forecast is given by the following formula:

E[r2
t+k|Ft] = E[λ̂2

t+k|Ft]+(ϕ̂1+ϕ̂2)(E[ε4t+k|Ft]−1) = E[λ2
1]+(β̂+γ̂1+γ̂2)k

(
E[λ̂2

t |Ft]−E[λ2
1]

)
+

+ (ϕ̂1 + ϕ̂2)(E[ε4t+k|Ft]− 1),

where E[λ2
1] is given by

E
[
λ2

1

]
=

α + (ϕ1 + ϕ2)

[
η(γ1 + γ2) + 1

]
1− (β + γ1 + γ2)

,

with η ≡ E [ε4t ]− 1 and E
[
λ̂2
t |Ft

]
is an estimate of λ2

t at time t.

Note that Theorem 6 provides the most general formulae for the RT-GARCH with

leverage and feedback. Forecasting formulae for the RT-GARCH model with leverage

only may be obtained by setting γ1 = γ2 = γ, while for the basic RT-GARCH model by

setting γ1 = γ2 = γ and ϕ1 = ϕ2 = ϕ.

7 Application

7.1 Data and Methodology

To estimate and evaluate competing models we use 3 datasets of open-to-close returns,

namely IBM, General Electric (GE) and the S&P 500 index. For IBM and GE the data spans

from the 2nd of January 1998 till the 1st of December 2016, while for the S&P500 the time
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span is from the 28th of January 2003 till the 1st of December 2016. The detailed descrip-

tion of the data is provided in the Supplementary Material. To avoid estimation bias we

split the sample into two parts, the first part will serve for the model’s estimation, and the

remaining part will be used for an evaluation of the out-of-sample performance using an

expanding window scheme. As with any forecasting exercise there is no direct guidance

of the optimal splitting point. For presenting the main results, we reserve 2/3 of the whole

sample for the estimation and the rest of the sample for the forecast evaluation. For the

IBM and GE stocks this results in 3000 and 1500 observations for estimation and evalua-

tion respectively. For the S&P500 data we have 2000 and 1000 observations for estimation

and evaluation respectively. However, to make sure that our results do not depend on

the splitting point, we present results for different splitting points in the Supplementary

Material. In addition to our full sample results, due to the likelihood of structural breaks

during the financial crisis period we also present results for 2 subsamples: pre- and post-

crisis periods. The pre-crisis period spans from 2nd of January (28th of January 2003 for

the S&P 500 index) till the end of July 2008. The crisis and post-crisis period constitutes

the rest of the available sample. For subsamples for GE and IBM stocks we take 1500 and

500 obsevations for estimation and evaluation respectively. For subsamples for S&P500

data we use 1000 and 500 obsevations for estimation and evaluation respectively.

For out-of-sample forecast performance we compare RT-GARCH models with the stan-

dard GARCH(1,1), GARCH(1,2) with normal and Student-t innovations, APARCH model

with Student-t distributed innovations (the most sophisticated GARCH-type model, see

Hansen and Lunde (2005) for details), as well as Simple and Exponential NoVaS method-

ologies of Politis (2007). The specifications of all competing models are presented in Table

1. We exclude SV models from this comparison as SV models are outside of the Maximum

Likelihood framework. Moreover, since the purpose of this paper is not to propose the

best volatility model but rather investigate whether incorporating available current in-

formation in GARCH-type models will improve on existing GARCH models in terms of
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out-of-sample volatility forecasts, inclusion of SV models is not necessary to answer this

question.

The “true volatility” would be needed in order to directly evaluate the forecasting per-

formance of competing models. Without the true volatility process, the most common

approach instead is to use realized volatility as a proxy for the conditional variance of re-

turns. We calculate the 5-minute realized variance from the intraday high-frequency data

for each stock, which we then take to be the proxy for the conditional variance of returns

in out-of-sample forecast evaluations.

7.2 Results and Discussion

In this section we report the parameter estimates for the RT-GARCH, the RT-GARCH

with leverage effect (RT-GARCH-L) and the RT-GARCH with leverage and feedback effect

(RT-GARCH-LF) models. Results are presented in Table 2. For all RT-GARCH models and

all datasets the parameter ϕ is positive and significantly different from zero. Note that for

the model with leverage, the value of the parameter ϕ2 is much larger than the value of

the parameter ϕ1, pointing at the fact that negative news contribute to volatility more than

positive ones.

For out-of-sample evaluation we use the only two “robust” loss functions (see Pat-

ton, 2011) in the context of volatility forecasting. A loss function is “robust” if for any

two volatility forecasts, h2
1t and h2

2t, their ranking according to expected loss is equivalent

whether it is done using the true conditional variance, σ2
t , or some proxy σ̂2

t , provided the

latter is conditionally unbiased, i.e. E[r2
t |Ft−1] = E [σ̂2

t |Ft−1] = σ2
t .

Tables 3-14 present the results. For the presentation of results we adopt the original

notation of Hansen et al. (2011), i.e. M̂?
95% denotes the MCS M̂? that contains the best

models with probability 0.95. For both statistical loss functions, MSE and QLIKE, Real-

time-GARCH and RT-GARCH-L models are always in the MCS M̂?
95% for all horizons,

while standard GARCH models most of the time fall outside of the MCS. We present
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the results for full sample as well as the results for pre- and post-crisis (including crisis)

subsamples.

We start by discussing the full sample results. For the 1-step ahead out-of-sample

volatility forecasts using the MSE loss function, the MCS for the IBM stock is quite wide

and consists of all competing models except for the NoVaS methodologies, while for the

QLIKE loss function the MCS consists solely of all RT-GARCH models. For the GE stock

for 1-step ahead forecasts MCS consists of all RT-GARCH models and the APARCH(2,2)

model for both loss functions. Finally, for the S&P 500 stock the MCS based on MSE loss

function is quite small and consists only of RT-GARCH and RT-GARCH-L models, while

the MCS based on the QLIKE loss function consists of RT-GARCH, RT-GARCH-L and

APARCH(2,2) models.

For the 5-step ahead forecasts the picture is very similar, except that for MSE loss func-

tion MCS sometimes includes the GARCH models with Student-t innovations. For exam-

ple, for the 5-step ahead forecasts using IBM data for the MSE loss function the MCS con-

sists only of RT-GARCH model, while for the QLIKE loss function both GARCH models

with Student-t innovations are included as well. A similar picture can be seen for the GE

stock for the MSE loss function, while for the QLIKE loss function the MCS consists again

only of RT-GARCH, RT-GARCH-L and the APARCH(2,2) models. For the S&P 500 stock

for the MSE loss function the MCS consists of all competing models but NoVaS method-

ologies, while for the QLIKE loss function the MCS consists only of the RT-GARCH and

APARCH(2,2) models.

For longer horizons, i.e. 10- and 15-step ahead out-of-sample volatility forecasts, the

picture is quite different. For all datasets the MCS consists only of the RT-GARCH and the

APARCH(2,2) models with the occasional inclusion of RT-GARCH-L model and some-

times GARCH models with Student-t innovations.

Interestingly, for all horizons the standard GARCH models with Gaussian innovations

are excluded from the MCS for all stocks. It is also interesting to note that most of the time
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the MCS for all datasets contains models with Student-t innovations (which allows for

heavier tails) and RT-GARCH models. However, RT-GARCH models perform no worse

(or most of the time even better) with just the normal innovations. As discussed in sec-

tion 2 the possible reason for this is that RT-GARCH models account for a time-varying

conditional kurtosis, therefore allowing the volatility to adjust to a new level faster than

the other standard GARCH models. It is also possible that the forecasting performance

of RT-GARCH models can be further improved if one considers Student-t innovations

for the error term. On the other hand, estimated on the full sample the RT-GARCH model

with leverage and feedback effects (RT-GARCH-LF) seems to perform worse than the sim-

ple RT-GARCH or RT-GARCH-L, as it can potentially overfit the data due to the model’s

higher complexity (i.e. higher number of parameters).

Given that all samples under consideration include the financial crisis, it is important

to account for the structural break in the volatility of returns. If one is to account for the

structural break, the parameters of each model have to be re-estimated during/after the

break. We address this issue by estimating and evaluating the models on two subsamples:

pre- and post-crisis period, where the latter includes the crisis period as well.

While the forecast evaluation results for the pre-crisis period are quite similar to the

full sample results, the crisis period MCS is quite different for all stocks. For the crisis

and post-crisis period the MCS for both loss function mainly consists of RT-GARCH-L,

RT-GARCH-LF and the APARCH(2,2) models. This result is general for all stocks and all

horizons. The difference in results emphasizes that during volatile periods it is crucial to

account for both leverage and time-varying kurtosis.

There are several reasons why NoVaS methodologies are never in the MCS. First of all,

Politis (2007) compares forecasts with the Mean Absolute Deviation (MAD) loss function,

which as we now know, due to Patton (2011), is not a robust loss function in the context

of volatility forecasting. The other reason may be that the comparison of NoVaS forecasts

was done with the use of squared returns as a volatility proxy, which was shown to be
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quite a noisy proxy for volatility of returns, see Hansen and Lunde (2006).

We also evaluate our forecasts with the risk management loss function, i.e. we com-

pute 1-step VaR forecasts using all competing models. For evaluation of VaR forecasts we

compute the Violation Ratio (VR), which is the ratio between the number of returns that

exceeded the VaR forecast to the number of the expected exceedances, accounting for a

significance level of α which we take to be 5%. If the model is accurate, the violation ratio

is expected to be exactly 1. A model has good forecasts if the VR is between 0.8 and 1.2;

and a model has quite imprecise forecasts if the VR<0.5 or VR>1.5. However, computing

only the VR is not enough for evaluating VaR forecasts as it is the measure of the uncondi-

tional coverage. We therefore also compute the Likelihood Ratio (LR) for the conditional

coverage from the failure process of the VaR forecasts, see Christoffersen (1998) for details.

Table 15 presents the results. Out of all models with a correct conditional coverage, RT-

GARCH (for all stocks) and RT-GARCH with leverage (for IBM stock) are the only models

that have an acceptable VR. In addition, this ratio will be far better than for the standard

GARCH(1,1) model with normal errors for all stocks under consideration. This result

further emphasizes the effect of having a time-varying kurtosis of returns, which allows

for the possibility of adjusting it over time in response to the data, playing a potentially

crucial role for forecasting.

After identifying which models are in the MCS, it is still interesting whether we can

pin down a single superior (in the sense that it is not outperformed by any other com-

peting model) forecasting model among those in the MCS. One possibility is to conduct

an out-of-sample test that has the ability to control either for possible over-fitting or over-

parametrization problems, which gives a more powerful framework to evaluate the per-

formances of competing models. We choose to conduct Hansen’s (2005) Test for Superior

Predictive Ability (SPA). For reasons of brevity results of the SPA test are presented in the

Supplementary Material to this paper. The overall conclusion is that the winning model

(among those in the MCS) is one of the RT-GARCH models for shorter horizons (i.e. 1-
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and 5-step ahead) and either APARCH model or RT-GARCH/RT-GARCH-L for longer

horizons.

In addition, we perform the likelihood ratio test for H0 : ϕ = 0, adjusted for testing

on the boundary, see Francq and Zakoïan (2009) for details. The values of the test statistic

are 8.5, 4.66 and 9.72 for IBM, GE and S&P500 respectively, which are significant at a

5% significance level. This suggests that all time series have a time-varying conditional

kurtosis.

Moreover, to show that the RT-GARCH model is a better fit to the data, especially in

the tails, figures 5-7 display the QQ plots of the standardized errors from the estimated

GARCH(1,1) and RT-GARCH models.
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Figure 5: QQ-plots of the implied error distribution for IBM stock.

31



Figure 6: QQ-plots of the implied error distribution for GE stock.
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Figure 7: QQ-plots of the implied error distribution for S&P500 index.

8 Conclusion

Volatility of asset returns is difficult to forecast due to its latent nature. In an attempt to

describe the volatility process standard GARCH models incorporate only past informa-
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tion in modelling volatility of assets’ returns. Up until now there was no evidence on the

relevance of incorporating current information into the conditional variance modelling

in GARCH-type models. We fill this gap by proposing a new model, the RT-GARCH,

which incorporates current information. The model is very general; it nests the stan-

dard GARCH models as its special case, and can easily incorporate leverage and feedback

effects by differentiating between positive and negative news. The new term, i.e. the

current realization of the standardized return, can be viewed in two ways: as a change

in the information set, and as an extra shape parameter for the density of returns which

determines the “peakedness” and/or thickness of the tails. This shape parameter allows

the conditional distribution of returns to have a time-varying kurtosis, which accounting

to the empirical application may well play a crucial role in forecasting volatility during

turbulent times.

Estimation of the RT-GARCH revealed that (i) incorporating current information into

volatility modelling allows the model to respond quicker to sudden changes of the un-

conditional level of volatility; and (ii) the combination of ex-ante and ex-post volatility

measurement helps to improve out-of-sample volatility forecasts and empirical fit when

compared to the forecasts and empirical fit given by the other competing models. More-

over the new model offers a framework for specification testing, which can be thought of

a test for constant conditional kurtosis versus a time-varying one.

We finish by suggesting some routes for future research. It would be of interest to

investigate whether the empirical performance of the proposed model can be further im-

proved by incorporating some realized measures as in Hansen et al.(2011) and/or assum-

ing Student-t distribution for innovations. In addition, deriving a continuous-time limit

of the RT-GARCH model will provide an answer of where exactly between GARCH and

SV models it stands. We leave these suggestions for future research.
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[3] Bandi, F. M. and R. Renò, 2012, Time-Varying leverage effects, Journal of Econometrics,

169, 94-113.

[4] Black, F., 1976, Studies of stock price volatility changes, in Proceedings of the 1976

Meetings of the American Statistical Association, 171-181.

[5] Bollerslev, T., 1986, Generalized autoregressive heteroskedasticity, Journal of Econo-

metrics, 31, 307-327.

[6] Brandt, A., 1986, The stochastic equation Yn+1 = AnYn + Bn with stationary coeffi-

cients, Advances in Applied Probability, 18, pp. 211-220.

[7] Christie, A. A., 1982, The stochastic behavior of common stock variances: value,

leverage and interest rate effects, Journal of Financial Economics, 10, 407-432.

[8] Christoffersen, P. F., 1998, Evaluating interval forecasts, International Economic Review,

1998, 39(4), 841862.

[9] Cox, D.R., 1981, Statistical analysis of time series: some recent developments, Scandi-

navian Journal of Statistics, 8(2), 93-115.

[10] Ding, Z., Granger, C.W.J. and Engle, R.F., 1993, A long memory property of stock

market returns and a new model, Journal of Empirical Finance, vol. (1), pp. 83-106.

[11] Engle, R. F., 1982, Autoregressive conditional heteroskedasticity with estimates of the

variance of United Kingdom inflation, Econometrica, Vol. 50, pp. 987-1007.

35



[12] Engle, R. F. and V. K. Ng, 1993, Measuring and testing the impact of wews on volatil-

ity, The Journal of Finance, 48, 1749-1778.

[13] Francq, C. and Zakoïan, J.-M., 2004, Maximum likelihood estimation of GARCH and

ARMA-GARCH processes, Bernoulli, 10, 605-637.

[14] Francq, C. and Zakoïan, J.-M., 2009, Testing the nullity of GARCH coefficients: correc-

tion of the standard tests and relative efficiency comparisons, Journal of the American

Statistical Association, 104, 313-324.

[15] French, K.R., Schwert, G.W. and Stambaugh, R.F., 1987, Expected stock returns and

volatility, Journal of Financial Economics, 19(1), 3-29.

[16] Ghysels, E., P. Santa-Clara, and R. Valkanov, 2005, There is a risk-return tradeoff after

all, Journal of Financial Economics, 76, 509-548.

[17] Ghysels, E., P. Santa-Clara, and R. Valkanov, 2006, Predicting volatility: getting the

most out of return data sampled at different frequencies, Journal of Econometrics, 131,

59-95.

[18] Glosten, L. R., R. Jagannathan, and D. E. Runkle, 1993, On the relation between the

expected value and the volatility of the nominal excess return on stocks, Journal of

Finance, 48(5), 1779-1801.

[19] Hall, P. and Heyde, C., 1980, Martingale limit theory and its application. New York:

Academic Press.

[20] Hansen, P.R., 2005, A test for superior predictive ability, Journal of Business&Economic

statistics,23(4), 365-380.

[21] Hansen, P.R., Huang, Z. and Shek, H.H., 2011, Realized GARCH: a joint model for

returns and realized measures of volatility, Journal of Applied Econometrics,27, 877-906.

36



[22] Hansen, P.R. and Lunde, A., 2001. A forecast comparison of volatility models: does

anything beat a GARCH (1,1)?, Journal of Applied Econometrics, vol. 20, 873-889.

[23] Hansen, P.R. and Lunde, A., 2006, Consistent ranking of volatility models, Journal of

Econometrics, Vol. 131, 97-121.

[24] Hansen P.R., Lunde, A. and Nason J. M., 2011, Model confidence set, Econometrica,Vol.

79, 453-497.

[25] Kesten, H., 1973, Random difference equations and renewal theory for products of

random matrices, Acta Mathematica, Vol. 131, Issue 1, 207-248.

[26] Linton, O., Whang Y-J. and Yen, Y-M., 2016, A nonparametric test of a strong leverage

hypothesis, forthcoming in Journal of Econometrics.

[27] Meddahi, N. and E. Renault, 2004, Temporal aggregation of volatility models, Journal

of Econometrics, 119, 355-379.

[28] Meitz M., and Saikkonen P., 2008, Ergodicity, Mixing, and existence of moments of a

class of Markov models with applications to GARCH and ACD models, Econometric

Theory, 24, 1291-1320

[29] Nelson, D. B., 1991, Conditional heteroskedasticity in asset returns: a new approach,

Econometrica, 59, 347-370.

[30] Patton, A., 2011, Volatility forecast evaluation and comparison using imperfect

volatility proxies , Journal of Econometrics, 160(1), 246-256.

[31] Politis, D. N., 2007, Model-free versus model-based volatility prediction, Journal of

Financial Econometrics, Vol. 5, Issue 3, 358-359.

[32] Shephard, N., 2008, Stochastic volatility, in New Palgrave Dictionary of Economics,

2nd Edition, MacMillan.

37



[33] Shephard, N., 1996, Statistical aspects of ARCH and stochastic volatility, Time Series

Models in Econometrics, Finance and Other Fields, London: Chapman & Hall, 1-67.

[34] Smetanina, E., 2017b, Asymptotic inference for Real-time GARCH model, Working

paper, University of Cambridge, available at SSRN: http://ssrn.com/abstract=2809055.

[35] Stout, W.F., 1974, Almost sure convergence, probability and mathematical statistics,

New York: Academic press.

[36] Wang, D. C. and P. A. Mykland, 2014, The estimation of leverage effect with high

frequency data, Journal of the American Statistical Association, 109, 197-215.

[37] Yu, J., 2005, On leverage in a stochastic volatility model, Journal of Econometrics, 127,

165-178.

38



Ta
bl

e
1:

Th
e

co
nd

it
io

na
lv

ar
ia

nc
e

sp
ec

ifi
ca

ti
on

of
di

ff
er

en
tm

od
el

s.

R
T-

G
A

R
C

H
λ

2 t
=
α

+
β
λ

2 t−
1

+
γ
r2 t
−

1
+
ϕ
ε2 t
,
E

[r
2 t
]

=
E

[λ
2 t
]+

2ϕ

R
T-

G
A

R
C

H
w

it
h

le
ve

ra
ge

λ
2 t

=
α

+
β
λ

2 t−
1

+
γ
r2 t
−

1
+
ϕ

1
ε2 t
1

(ε
t
≥

0
)
+
ϕ

2
ε2 t
1

(ε
t
<

0
),

E
[r

2 t
]

=
E

[λ
2 t
]+

2(
ϕ

1
+
ϕ

2
)

R
T-

G
A

R
C

H
w

it
h

le
ve

ra
ge

an
d

fe
ed

ba
ck

λ
2 t

=
α

+
β
λ

2 t−
1

+
γ

1
r2 t
−

1
1

(r
t
≥

0
)
+
γ

2
r2 t
−

1
1

(r
t
<

0
)
+
ϕ

1
ε2 t
1

(ε
t
≥

0
)
+
ϕ

2
ε2 t
1

(ε
t
<

0
)

E
[r

2 t
]

=
E

[λ
2 t
]+

2(
ϕ

1
+
ϕ

2
)

G
A

R
C

H
(1

,1
)w

it
h

st
an

da
rd

no
rm

al
er

ro
rs

σ
2 t

=
α

+
β
σ

2 t−
1

+
γ
r2 t
−

1

G
A

R
C

H
(1

,2
)w

it
h

st
an

da
rd

no
rm

al
er

ro
rs

σ
2 t

=
α

+
β
σ

2 t−
1

+
γ

1
r2 t
−

1
+
γ

2
r2 t
−

2

G
A

R
C

H
(1

,1
)w

it
h

St
ud

en
t’s

t-
di

st
ri

bu
te

d
er

ro
rs

σ
2 t

=
α

+
β
σ

2 t−
1

+
γ
r2 t
−

1

G
A

R
C

H
(1

,2
)w

it
h

St
ud

en
t’s

t-
di

st
ri

bu
te

d
er

ro
rs

σ
2 t

=
α

+
β
σ

2 t−
1

+
γ

1
r2 t
−

1
+
γ

2
r2 t
−

2

A
PA

R
C

H
(2

,2
)w

it
h

St
ud

en
t’s

t-
di

st
ri

bu
te

d
er

ro
rs

σ
2 t

=
α

0
+
α

1
[|r

t−
1
|−

γ
1
r t
−

1
]2

+
α

2
[|r

t−
2
|−

γ
2
r t
−

2
]2

+
β

1
σ

2 t−
1

+
β

2
σ

2 t−
2

Si
m

pl
e

N
oV

aS
σ

2 t
=
α
s2 t
−

1
+
α

0
X

2 t
+
∑ p i=

1
α
iX

2 t−
p

s2 t
−

1
=

1
t−

1

∑ t−1 k
=

1
X

2 k
,α

=
0,
α
i

=
1
p
+

1
,0
≤
i
≤
p

Ex
po

ne
nt

ia
lN

oV
aS

σ
2 t

=
α
s2 t
−

1
+
α

0
X

2 t
+
∑ p i=

1
α
iX

2 t−
p

s2 t
−

1
=

1
t−

1

∑ t−1 k
=

1
X

2 k
,α

=
0,
α
i

=
c′
e−

c
i
,0
≤
i
≤
p,
c′

=
1

∑ p i=
0
e−

c
i

N
ot

e:
In

Si
m

pl
e

N
oV

aS
p

is
ch

os
en

to
m

at
ch

th
e

ku
rt

os
is

(=
3)

of
th

e
no

rm
al

iz
ed

re
tu

rn
se

ri
es

.
In

Ex
po

ne
nt

ia
lN

oV
aS

in
it

ia
lv

al
ue

of
p

is
ch

os
en

to
be

n 5
;c

is

ch
os

en
to

m
at

ch
th

e
ku

rt
os

is
(=

3)
of

th
e

no
rm

al
iz

ed
re

tu
rn

se
ri

es
an

d
p

is
ad

ju
st

ed
by

th
e

m
ax

im
iz

at
io

n
ro

ut
in

e.
A

PA
R

C
H

(2
,2

)
co

rr
es

po
nd

s
to

th
e

st
an

da
rd

G
JR

(2
,2

)m
od

el
w

he
ne

ve
r
0
≤
γ
i
≤

1,
i
=

1,
2.

39



Table 2: Parameter estimates of RT-GARCH models

Parameter estimates of RT-GARCH

Dataset α β γ ϕ

IBM 0.0006

(18 ∗ 10−4)

0.8755

(9 ∗ 10−4)

0.0780

(14 ∗ 10−4)

0.0758

(21 ∗ 10−4)

GE 0.0001

(14 ∗ 10−4)

0.9211

(38 ∗ 10−3)

0.0627

(2 ∗ 10−5)

0.0378

(17 ∗ 10−4)

S&P 500 0.0001

(12 ∗ 10−4)

0.9124

(14 ∗ 10−3)

0.0726

(45 ∗ 10−3)

0.0138

(11 ∗ 10−4)

Parameter estimates of RT-GARCH with leverage

Dataset α β γ ϕ1 ϕ2

IBM 0.0003

(15 ∗ 10−4)

0.8883

(6 ∗ 10−4)

0.0703

(11 ∗ 10−4)

0.0475

(19 ∗ 10−4)

0.0886

(27 ∗ 10−4)

GE 0.0001

(2.7 ∗ 10−4)

0.9273

(38 ∗ 10−4)

0.0550

(4.2 ∗ 10−4)

0.0237

(2 ∗ 10−4)

0.0529

(48 ∗ 10−3)

S&P 500 0.0016

(25 ∗ 10−4)

0.8995

(15 ∗ 10−3)

0.0718

(6.7 ∗ 10−4)

0.0003

(27 ∗ 10−4)

0.0481

(8.1 ∗ 10−4)

Parameter estimates of RT-GARCH with leverage and feedback

Dataset α β γ1 γ2 ϕ1 ϕ2

IBM 0.0001

(17 ∗ 10−4)

0.8599

(30 ∗ 10−4)

0.0328

(14 ∗ 10−4)

0.0706

(15 ∗ 10−4)

0.0903

(26 ∗ 10−4)

0.1319

(29 ∗ 10−4)

GE 0.0001

(15 ∗ 10−4)

0.9225

(40 ∗ 10−3)

0.0343

(11 ∗ 10−4)

0.0322

(10 ∗ 10−4)

0.0450

(18 ∗ 10−3)

0.1253

(27 ∗ 10−3)

S&P 500 0.0023

(4.2 ∗ 10−4)

0.9185

(1.8 ∗ 10−3)

0.0127

(5 ∗ 10−4)

0.0605

(23 ∗ 10−4)

0.0004

(10−4)

0.0740

(4.6 ∗ 10−4)

Note: The table presents parameter estimates for respective models based on the full sample. The sample size used for estimation is 3000 for IBM and GE
stocks and 2000 for SP500 index.
Standard errors, calculated numerically, are given in parentheses.
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Appendix.

To derive the eq.(4) observe that λ2
t cn be written as follows:

λ2
t = bt−1 + ϕε2t = bt−1 + ϕ

r2
t

λ2
t

.

Provided that λ2
t > 0, it follows that:

λ2
t =

1

2
bt−1 +

1

2

√
b2
t−1 + 4ϕr2

t =
1

2
bt−1 +

1

2
bt−1

√
1 +

4ϕr2
t

b2
t−1

≈ 1

2
bt−1 +

1

2
bt−1

(
1 +

2ϕr2
t

b2
t−1

)
=

= bt−1+
ϕr2

t

bt−1

=
ϕr2

t

bt−1

+α+γr2
t−1+βλ2

t−1 =
ϕr2

t

bt−1

+α+γr2
t−1+β

[
ϕr2

t−1

bt−2

+ α + γr2
t−2 + βλ2

t−2

]
= · · · =

=
α

1− β
+
ϕr2

t

bt−1

+
∞∑
j=1

(
βjϕ

bt−1−j
+ γβj−1

)
r2
t−j,

where in the first line of the derivations we used that for x << 0 it holds that (1 + x)α ≈

1 + αx.

Proof of Theorem 1. Consider the general model:

rt = λtεt

λ2
t = α + βλ2

t−1 + γr2
t−1 + ϕε2t ,

where {εt} is i.i.d. random variables such that E (εt) = 0, E (ε2t ) = 1 with the density fε. In

order to compute P (rt ≤ c) note that the first equation can be rewritten as

rt =
√
α + βλ2

t−1 + γr2
t−1 + ϕε2t εt

such that

P (rt ≤ c) = P (
√
α + βλ2

t−1 + γr2
t−1 + ϕε2t εt ≤ c).

Since the scaling factor of εt is positive there is one unique value of d such that
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√
α + βλ2

t−1 + γr2
t−1 + ϕe2e ≤ c

for all e ≤ d. To obtain d we first square the above equation such that

(α + βλ2
t−1 + γr2

t−1 + ϕd2)d2 = c2 ⇔ (α + βλ2
t−1 + γr2

t−1)d2 + ϕd4 = c2. (19)

Eq. (19) is a quartic equation in dwhenever ϕ 6= 0 and is quadratic equation in dwhenever

ϕ = 0 (which is simply the usual GARCH(1,1) case). For quartic equation the solutions

are given by:

d1,2 = ±

√√
b2
t−1 + 4c2ϕ− bt−1

2ϕ

d3,4 = ±

√
−
√
b2
t−1 + 4c2ϕ+ bt−1

2ϕ

with bt−1 = α + βλ2
t−1 + γr2

t−1. We disregard x3,4 since we are only interested in the real

valued solutions, such that we have:

d(c) = sign(c)

√√
b2
t−1 + 4c2ϕ− bt−1

2ϕ
(20)

and

P (rt ≤ c) =

ˆ d(c)

−∞
fε(x)dx.

In order to emphasize the dependence of d(c) on the past information as well as the pa-

rameter vector θ = (α, β, γ, ϕ)′ we adopt the following notation:

d(c, bt−1, θ) = sign(c)

√√
b2
t−1 + 4c2ϕ− bt−1

2ϕ
(21)
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The solution to the quadratic equation in d for the case ϕ = 0 is given by:

d(c, bt−1, θ) = c/
√
bt−1, (22)

which corresponds to the standard GARCH(1,1) model (as bt−1 = σ2
t whenever ϕ = 0),

for which the conditional density of the returns is just fr(r|Ft−1) = 1√
bt−1

fε(ε) = fε(ε)/σt,

where Ft−1 denotes the information set up to time t− 1. To obtain the density in the case

ϕ 6= 0 we use Leibniz integral rule with variable limits to get:

fr(r|Ft−1) =
∂P (rt ≤ c)

∂c
=
∂d(c, bt−1, θ)

∂c
|c=r fε(d(r, bt−1, θ)) ={

∂sign(c)

∂c

√√
b2
t−1 + 4c2ϕ− bt−1

2ϕ
+ sign(c)

1

2

(√
b2
t−1 + 4c2ϕ− bt−1

2ϕ

)− 1
2

1

2ϕ
×

× 1

2
(b2
t−1 + 4c2ϕ)−

1
2 8cϕ

}
c=r

fε(d(r, bt−1, θ)) =

= sign(r)r

√
2ϕ

(b2
t−1 + 4r2ϕ)(

√
b2
t−1 + 4r2ϕ− bt−1)

fε(d(r, bt−1, θ)) =

=
|r|

d(r, bt−1, θ)
√
b2
t−1 + 4r2ϕ

fε(d(r, bt−1, θ)).

Remark: Note that ∂sign(c)
∂c

= 2δ(c), where δ(·) is a Dirac delta function which is zero

everywhere except at 0, where δ(0) = ∞, therefore the above formula holds for r 6= 0.

Before we calculate the limit of the above equation at r = 0, note that d(r, bt−1, θ) in the

denominator iinvolves sign(r), while the numerator involves |r| = rsign(r), we thus can

write the density as:

fr(r|Ft−1) =
r

d(r, bt−1, θ)
√
b2
t−1 + 4r2ϕ

fε(d(r, bt−1, θ))
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with d(r, bt−1, θ) =

√√
b2t−1+4r2ϕ−bt−1

2ϕ
. Note that εt = d(rt; bt−1, θ0). We now calculate the

limit of the density function at r = 0. First observe that

lim
r→0

r

d(r, bt−1, θ)
=

r√
(b2t−1+4ϕr2)

1
2−bt−1

2ϕ

=
r√(

b2t−1

4ϕ2 + 4ϕr2

4ϕ2

)1/2

− bt−1

2ϕ

=

=
r√

bt−1

2ϕ

((
1 + 4ϕr2

b2t−1

)1/2

− 1

) =
r√

bt−1

2ϕ

(
1 + 1

2
4ϕr2

b2t−1
− 1
) =

√
bt−1.

And as a result we have the following limit

lim
r→0

fr(r|Ft−1) = lim
r→0

r

d(r, bt−1, θ)
√
b2
t−1 + 4r2ϕ

fε(d(r, bt−1, θ)) =
1√
bt−1

fε(0).

The corresponding cumulative distribution function is given by

F (r|Ft−1) =

ˆ d(r,bt−1,θ)

−∞
fε(x)dx = Fε (d(r, bt−1, θ)) .

The jth conditional moment of returns can be derived as follows (for the ease of expo-

sition we write d(r) instead of d(r, bt−1, θ)):

E
[
rj|Ft−1

]
=

ˆ ∞
−∞

rjfr(r|Ft−1)dr =

ˆ ∞
−∞

rj
r

d(r)
√
b2
t−1 + 4r2ϕ

fε(d(r))dr =

=

ˆ ∞
−∞

rj
√
bt−1 + ϕd(r)2√
b2
t−1 + 4r2ϕ

fε(d(r))dr =

ˆ ∞
−∞

rj
√
bt−1 + ϕd(r)2

bt−1 + 2ϕd(r)2
fε(d(r))dr. (23)

Now observe that

dr = d(d(r))
bt−1 + 2ϕd(r)2√
bt−1 + ϕd(r)2

.
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Thus with a change of variable of integration eq.(23) can be written as

E
[
rj|Ft−1

]
=

ˆ ∞
−∞

rj
√
bt−1 + ϕd(r)2

bt−1 + 2ϕd(r)2
fε(d(r))dr =

ˆ ∞
−∞

rjfε(d(r))d(d(r)) =

=

ˆ ∞
−∞

d(r)j
(
bt−1+ϕd(r)2

)j/2
fε(d(r))d(d(r)) =

ˆ ∞
−∞

d(r)j
(
bt−1(1+

ϕd(r)2

bt−1

)

)j/2
fε(d(r))d(d(r)) =

=

ˆ ∞
−∞

d(r)jb
j/2
t−1

(
(1+

ϕd(r)2

bt−1

)

)j/2
fε(d(r))d(d(r)) =

ˆ ∞
−∞

d(r)jb
j/2
t−1

(
(1+

j

2

ϕd(r)2

bt−1

)

)
fε(d(r))d(d(r)) =

= b
j/2
t−1

[ ˆ ∞
−∞

d(r)jfε(d(r))d(d(r)) +
jϕ

2bt−1

ˆ ∞
−∞

d(r)j+2fε(d(r))d(d(r))

]
=

= b
j/2
t−1

[
E
[
d(r)j

]
+

jϕ

2bt−1

E
[
d(r)j+2

]]
,

where in the third line of this derivations we used the first-order Taylor approximation

and the fact that d(r) is symmetric around zero, E[d(r)] = 0. �

Proof of Theorem 2. The general model is given by:

rt = λtεt (24)

λ2
t = α + βλ2

t−1 + γr2
t−1 + ϕε2t . (25)

Since the error term εt is i.i.d, it is then obvious that the error process (εt)t∈Z is always

strictly stationary and ergodic. Thus, (rt)t∈Z is a strictly stationary process if and only if

(λt)t∈Z is strictly stationary. Therefore, the task of deriving the strict stationarity conditions

for the whole process (rt, λt)t∈Z can be reduced to deriving strict stationarity conditions

for (λ2
t )t∈Z, given by eq.(25).

Let’s now express (λ2
t )t∈Z solely in terms of the error process (εt)t∈Z. Repeatedly substi-

tuting for λ2
t−1 in eq.(25) , we have:

λ2
t = λ0

t∏
i=1

(β + γε2t−i) +
t∑
i=0

(
i−1∏
j=0

(β + γε2t−j−1)

)
(α + ϕεt−i), t ≥ 2. (26)
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In order for eq.(26) to be well defined we need either to assume the trivial σ-algebra F0

(and a probability measure µ0) for the starting value λ2
0 or to assume that the system ex-

tends infinitely far into the past. We proceed by implementing the former approach, defin-

ing:

P[λ2
0 ∈ Γ] = µ0(Γ) ∀Γ ∈ B and µ0 ((0,∞)) = 1, (27)

where B denotes the Borel sets on [0,∞). In order to find strict stationarity conditions of λ2
t

we next rewrite eq.(25) in the form of the stochastic difference equation Yt+1 = AtYt + Bt,

where Yt, At and Bt are given by:

At = β + γε2t , Bt = α + ϕε2t+1 and Yt = λ2
t (28)

Since sequences (At)t∈N and (Bt)t∈N are measurable transformations of the strictly sta-

tionary and ergodic process (εt)t∈N we can make use of the Theorem 3.5.8 of Stout (1974)

to claim that these sequences are strictly stationary and ergodic as well as the sequence

Ψ = (At, Bt)t∈N. If we rewrite eq.(26) in terms of eq.(28), it follows that (Yt)t∈N = (λ2
t )t∈N

is the solution of the stochastic difference equation Yt+1 = AtYt + Bt. Every such solution

then should satisfy the following representation:

Yt+1 = AtYt+Bt = AtAt−1Yt−1+AtBt−1+Bt = AtAt−1At−2Yt−2+AtAt−1Bt−2+AtBt−1+Bt =

= · · · =

(
t∏
i=0

At−i

)
Y0 +

t∑
i=0

(
i−1∏
j=0

At−j

)
Bt−i, (29)

with the usual convention that
∏−1

j=0At−j = 1 for the product over an empty index set.

Let’s denote by Y an arbitrary R-valued random variable, which is defined on the same

probability space as Ψ. Note that Y and Ψ should not necessarily be independent. The
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solution yt(Y,Ψ) of eq.(29) is then given by:

yt(Y,Ψ) =

(
t−1∏
i=0

Ai

)
Y0 +

t−1∑
i=0

(
t−1∏
j=t−i

Aj

)
Bt−i−1.

We have shown earlier that the sequence Ψ = (At, Bt) is strictly stationary and ergodic, we

can now apply Theorem 1 of Brandt (1986) to deduce that yt(Ψ) =
∑∞

i=0

(∏t−1
j=n−iAj

)
Bt−i−1,

t ∈ N is strictly stationary solution if and only if the following conditions are satisfied:

P(A0 = 0) > 0

or

−∞ 5 E log |A0| < 0 E ( log |B0|)+ <∞,

where x+ = max(0, x) for x ∈ R. Plugging in the expressions for A0 and B0, given by

eq.(28) we get the following strict stationarity conditions:

−∞ 5 E log
∣∣β + γε20

∣∣ < 0 E
(
log
∣∣α + ϕε20

∣∣)+
<∞,

in addition to requiring that β > 0, γ > 0 and ϕ 6= 0. �

Proof of Theorem 3.

The result follows directly from combining eq. (6) and eq.(7). �

Proof of Theorem 4.

The proof follows directly from Theorem 3 and the fact that E[r2
t ] = E[λ2

t ] + ϕ(E[ε4t ] − 1).

For proving the last claim of the Theorem 4 notice that since E[rt|Ft−1] = 0 for all t, then

cov(rt, rs|Ft−1) = E [rtrs|Ft−1] for s < t, which we will calculate by direct integration
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against the density of rt, i.e.

E [rtrs|Ft−1] =

ˆ ∞
−∞

ˆ ∞
−∞

rtrsfrtrs(rt, rs)drtdrs =

ˆ ∞
−∞

ˆ ∞
−∞

rtrsfrt(rt)frs(rs)drtdrs =

=

ˆ ∞
−∞

ˆ ∞
−∞

d(rt)

(
bt−1+ϕd(rt)

2

)1/2

fε(d(rt))d(rs)

(
bs−1+ϕd(rs)

2

)1/2

fε(d(rs))d(d(rt))d(d(rs)) =

=

ˆ ∞
−∞

ˆ ∞
−∞

d(rt)

(
bt−1(1+

ϕd(rt)
2

bt−1

)

)1/2

fε(d(rt))d(rs)

(
bs−1(1+

ϕd(rs)
2

bs−1

)

)1/2

fε(d(rs))d(d(rt)d(d(rs)) =

=

ˆ ∞
−∞

d(rt)b
1/2
t−1

(
(1+

ϕd(rt)
2

bt−1

)

)1/2

fε(d(rt))d(d(rt))

ˆ ∞
−∞

d(rs)b
1/2
s−1

(
(1+

ϕd(rs)
2

bs−1

)

)1/2

fε(d(rs))d(d(rs)) =

=

ˆ ∞
−∞

d(rt)b
1/2
t−1

(
(1+

1

2

ϕd(rt)
2

bt−1

)

)
fε(d(rt))d(d(rt))

ˆ ∞
−∞

d(rs)b
1/2
s−1

(
(1+

1

2

ϕd(rs)
2

bs−1

)

)
fε(d(rs))d(d(rs)) =

= b
1/2
t−1

[ ˆ ∞
−∞

d(rt)fε(d(rt))d(d(rt)) +
jϕ

2bt−1

ˆ ∞
−∞

d(rt)
3fε(d(rt))d(d(rt))

]
×

b
1/2
s−1

[ˆ ∞
−∞

d(rs)fε(d(rs))d(d(rs)) +
jϕ

2bs−1

ˆ ∞
−∞

d(rs)
3fε(d(rs))d(d(rs))

]
=

= b
1/2
t−1b

1/2
s−1

[
E [d(rt)] +

ϕ

2bt−1

E
[
d(rt)

3
]] [

E [d(rs)] +
ϕ

2bt−1

E
[
d(rs)

3
]]

Given that the error term d(r) is symmetric around zero, i.e. its mean and skewness are

zero, we get exactly zero in the last equation above. �

Proof of Theorem 5.

E[r4
t ] = E[λ4

t r
4
t ] = (α+βλ2

t−1+γr2
t−1+ϕε2t )(α+βλ2

t−1+γr2
t−1+ϕε2t )ε

4
t = α2E[ε4t ]+2αβE[λ2

t−1]E[ε4t ]+

+ 2αγE[r2
t−1]E[ε4t ] + 2αϕE[ε6t ] + β2E[λ4

t−1]E[ε4t ] + 2βγE[λ2
t−1]E[r2

t−1]E[ε4t ]+

+ 2βϕE[λ2
t−1]E[ε6t ] + γ2E[r4

t−1]E[ε4t ] + 2ϕγE[r2
t−1]E[ε6t ] + ϕ2E[ε8t ].

Substituting eq.(7) in the equation above and rearranging we get:

(α + 4αγϕ)E[ε4t ] + (2αβ + 2αγ + 4βγϕ)E[λ2
t−1]E[ε4t ] + (2αϕ+ 4ϕ2γ)E[ε6t ]+

+ (β2 + 2βγ)E[λ4
t−1]E[ε4t ] + (2βϕ+ 2γϕ)E[λ2

t−1]E[ε6t ] + γ2E[r4
t ]E[ε4t ] + ϕ2E[ε8t ]
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If rt is fourth order stationary (E[r4
t ] = E[r4

t−1]), then

E[r4
1] =

[
(α + 4αγϕ)E[ε4t ] + (2αβ + 2αγ + 4βγϕ)E[λ2

t−1]E[ε4t ] + (2αϕ+ 4ϕ2γ)E[ε6t ]+

+ (β2 + 2βγ)E[λ4
t−1]E[ε4t ] + (2βϕ+ 2γϕ)E[λ2

t−1]E[ε6t ] + ϕ2E[ε8t ]

][
1− γ2E[r4

t ]E[ε4t ]

]−1

Since E[r4] must be positive, γ2 must also satisfy (in addition to case (1) or case (2)):

1− γ2E[ε4t ] > 0 ⇔ γ2 <
1

E[ε4t ]
. �

Proof of Theorem 6.

We start by writing down the RT-GARCH model with leverage and feedback:

rt = λtεt

λ2
t = α + βλ2

t−1 + γ1r
2
t−11(rt>0) + γ2r

2
t−11(rt≤0) + ϕ1ε

2
t1(εt>0) + ϕ2ε

2
t1(εt≤0). (30)

Denoting by κ := E [ε4
t ] and η := κ − 1 and following the same steps as in the proof of

Theorems 3 and 4 (see details in in the Supplementary Material to this paper) we have:

E[r2
t ] = α+βE[λ2

t−1] +γ1E[r2
t−1|rt > 0] +γ2E[r2

t−1|rt ≤ 0] +ϕ1E
[
ε4t |εt > 0

]
+ϕ2E

[
ε4t |εt ≤ 0

]
(31)

and

E[λ2
t ] = α+βE[λ2

t−1]+γ1E[r2
t−1|rt > 0]+γ2E[r2

t−1|rt ≤ 0]+ϕ1E
[
ε2t |εt > 0

]
+ϕ2E

[
ε2t |εt ≤ 0

]
.

(32)

Combining eq.(31)-(32) then yields:

E[r2
t ] = E[λ2

t ] + (ϕ1 + ϕ2)

(
E
[
ε4
t

]
− 1

)
(33)
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In addition we also have that the unconditional first moment of λ2
t is

E[λ2
1] =

α + (ϕ1 + ϕ2) [η(γ1 + γ2) + 1]

1− (β + γ1 + γ2)
. (34)

Using eq.(31) and (32) we can write:

E
[
λ2
t+1|Ft

]
= α + (ϕ1 + ϕ2) [η(γ1 + γ2) + 1] + (β + γ1 + γ2)E

[
λ2
t |Ft

]
. (35)

Now note that from eq.(34) we have:

α + (ϕ1 + ϕ2) [η(γ1 + γ2) + 1] = [1− (β + γ1 + γ2)]E
[
λ2

1

]
,

which, when substituted back into eq.(35), together with eq.(33) provides us with the for-

mula in Theorem 6. �
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