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What's the story?

When you have eliminated all which is impossible, then whatever remains,
however improbable, must be the truth.

—"The Adventure of the Blanched Soldier”
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Stylized facts of asset returns

@ Log returns are not Gaussian;

@ Log returns are not autocorrelated;

¢

Absolute log returns are serially correlated;

@ Aggregational gaussianity;

©

Volatility clustering;

@ Gain/loss asymmetry;
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Previous models

@ Fitting the unconditional distribution of log returns;

> being able to fit "the fat tail’;

> 'aggregational gaussianity’ can be well explained;

> can not reproduce the autocorrelation of log return (the second stylized fact).
@ Regime switching model (HMM);

> market returns flip between different regimes according to a Markov chain;
> 'volatility clustering’ can be explained;
> 'absence of autocorrelations in log returns’ can be achieved;

> ’autocorrelation of absolute returns’ is not well captured. (Rydén et al. 1998)

@ GARCH...
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Two-regime Markovian Model

An unobserved ergodic Markov chain (&) nez. Independently of £, we have two sequences
(X,’,),,ez of independent random variables, i = 1,2, with X;, ~ F; for all n and i, in terms

of which the return r, on day n is 23:1 I{gn:,-}X,i. Let pj denote the mean of regime .
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Two-regime Markovian Model

An unobserved ergodic Markov chain (€s)nez. Independently of £, we have two sequences
(X3)nez of independent random variables, i = 1,2, with X, ~ F; for all n and i/, in terms
of which the return r, on day n is Z?Zl lte,—i3 Xn. Let pi denote the mean of regime .

Proposition J

Suppose that i1 = o = p1. Then E[rarnsk] = u? for any k >0 and n € Z.

PROOF. Fix k > 0 and let X = o(&m, m € Z). We see that

Elrarns] = E[E[rarnix | X]]

2 2

- ZZE[E[XII’Xerrk | XT;6n = i, Enric = J]
i=1 j=1
2

2
= ZZE[MM;& =1i,&nk = J]

i=1 j=1
2
= K,
using the fact that the X’s are independent of &’ and of each other, and then using the
hypothesis that 1 = po.
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Autocovariance of absolute returns

The autocorrelation of absolute returns has been found to decay quite slowly with lag
(Granger et al. 2000). If we set 7 as the invariant law of ¢ and

v = / |x — p| Fi(dx)
for the (centered) absolute first moment in regime i, we find that
Elr, —p| = muv+ mws

El(ta — pu)(rosk —p)] = (mn mawn) P (2)
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Autocovariance of absolute returns

The autocorrelation of absolute returns has been found to decay quite slowly with lag
(Granger et al. 2000). If we set 7 as the invariant law of £ and

Vi = / |x — u| Fi(dx)
for the (centered) absolute first moment in regime 7, we find that
Elr, —p| = muv+ mws
Bl — i) =] = (mn mavn) P (1)

It now follows that the covariance of the centred absolute returns is given by (for k > 0)

cov(|rn — pls |rork —pl) = (mn mrs) <Pk a <i> (m ﬁ2)> (Z:)
(71'11/1 71_2]/2) V)\kUT <V1> )

2

where )\ is the eigenvalue of P different from 1, and v (respectively, u) is the right
(respectively, left) eigenvector of .
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We consider conditional distributions F; of returns given the regime of the Markov chain
& which are members of the generalized hyperbolic class of distributions, or of some
subclass.

Rogers and Zhang (2010) Understanding Asset Returns 10 / 20



Distributions of Regimes

We consider conditional distributions F; of returns given the regime of the Markov chain
& which are members of the generalized hyperbolic class of distributions, or of some
subclass. The density of GH(\, «, 3,6, 1) is

e K (aVFE AR &
V21K (67) ( S M)Z/a)l/Z—A

x—p)

where v = \/a? — 32, and the moment-generating function (MGF) is

&) KOV (BEF)

T (@ =B+ Kx(57)

Rogers and Zhang (2010) Understanding Asset Returns 10 / 20



Distributions of Regimes

We consider conditional distributions F; of returns given the regime of the Markov chain
& which are members of the generalized hyperbolic class of distributions, or of some
subclass. The density of GH(\, «, 3,6, 1) is

e K (aVFE AR &
V21K (67) ( S M)Z/a)l/Z—A

x—p)

where v = \/a? — 32, and the moment-generating function (MGF) is

&) KOV (BEF)

(a2 = (B4 2))*/2 Kx(67)

Various subfamilies of the GH class are of interest in their own right:

Z

Rogers and Zhang (2010) Understanding Asset Returns 10 / 20



Distributions of Regimes

We consider conditional distributions F; of returns given the regime of the Markov chain
& which are members of the generalized hyperbolic class of distributions, or of some
subclass. The density of GH(\, «, 3,6, 1) is

(/5 Kacara (/T =) el
V21K (67) ( S M)Z/a)l/z_A

X — x—1)

where v = \/a? — 32, and the moment-generating function (MGF) is

&) KOV (BEF)

(a2 = (B4 2))*/2 Kx(67)

Various subfamilies of the GH class are of interest in their own right:

Z

@ taking # = 0 gives the symmetric generalized hyperbolic class;

Rogers and Zhang (2010) Understanding Asset Returns 10 / 20



Distributions of Regimes

We consider conditional distributions F; of returns given the regime of the Markov chain
& which are members of the generalized hyperbolic class of distributions, or of some
subclass. The density of GH(\, «, 3,6, 1) is

2 )2
(/0 Kose (WVEEER)
1/2—x
V21K (67) ( /57 1 (x — M)Z/a)
where v = \/a? — 32, and the moment-generating function (MGF) is

&) KOV (BEF)

(a2 = (B4 2))*/2 Kx(67)

Various subfamilies of the GH class are of interest in their own right:

X — x—1)

Z

@ taking # = 0 gives the symmetric generalized hyperbolic class;

@ taking A = 1 gives the hyperbolic class;

Rogers and Zhang (2010) Understanding Asset Returns 10 / 20



Distributions of Regimes

We consider conditional distributions F; of returns given the regime of the Markov chain
& which are members of the generalized hyperbolic class of distributions, or of some
subclass. The density of GH(\, «, 3,6, 1) is

2 )2
(/0 Kose (WVEEER)
1/2—x
V21K (67) ( /57 1 (x — M)Z/a)
where v = \/a? — 32, and the moment-generating function (MGF) is

&) KOV (BEF)

(a2 = (B4 2))*/2 Kx(67)

Various subfamilies of the GH class are of interest in their own right:

X — x—1)

Z

@ taking # = 0 gives the symmetric generalized hyperbolic class;
@ taking A = 1 gives the hyperbolic class;
@ taking A =1 and 8 = 0 gives the symmetric hyperbolic class;

Rogers and Zhang (2010) Understanding Asset Returns 10 / 20



Distributions of Regimes

We consider conditional distributions F; of returns given the regime of the Markov chain
& which are members of the generalized hyperbolic class of distributions, or of some
subclass. The density of GH(\, «, 3,6, 1) is

2 )2
(/0 Kose (WVEEER)
1/2—x
V21K (67) ( /57 1 (x — M)Z/a)
where v = \/a? — 32, and the moment-generating function (MGF) is

&) KOV (BEF)

(a2 = (B4 2))*/2 Kx(67)

Various subfamilies of the GH class are of interest in their own right:

X — x—1)

Z

@ taking # = 0 gives the symmetric generalized hyperbolic class;
@ taking A = 1 gives the hyperbolic class;
@ taking A =1 and 8 = 0 gives the symmetric hyperbolic class;

@ taking 6 = 0 and 3 = 0 gives the symmetric variance-gamma class;

Rogers and Zhang (2010) Understanding Asset Returns 10 / 20



Distributions of Regimes

We consider conditional distributions F; of returns given the regime of the Markov chain
& which are members of the generalized hyperbolic class of distributions, or of some
subclass. The density of GH(\, «, 3,6, 1) is

2 )2
(/0 Kose (WVEEER)
1/2—x
V21K (67) ( /57 1 (x — M)Z/a)
where v = \/a? — 32, and the moment-generating function (MGF) is

&) KOV (BEF)

(a2 = (B4 2))*/2 Kx(67)

Various subfamilies of the GH class are of interest in their own right:

X — x—1)

Z

@ taking # = 0 gives the symmetric generalized hyperbolic class;
taking A = 1 gives the hyperbolic class;

taking A =1 and 8 = 0 gives the symmetric hyperbolic class;
taking § = 0 and 8 = 0 gives the symmetric variance-gamma class;
taking @« = =0 and A = —v//2 gives a Student-t, distribution.

¢ ¢ ¢ ¢

Rogers and Zhang (2010) Understanding Asset Returns 10 / 20



Distributions of Regimes

We consider conditional distributions F; of returns given the regime of the Markov chain
& which are members of the generalized hyperbolic class of distributions, or of some
subclass. The density of GH(\, «, 3,6, 1) is

e K (aVFE AR &
V21K (67) ( S M)Z/a)l/Z—A

x—p)

where v = \/a? — 32, and the moment-generating function (MGF) is

&) KOV (BEF)

(a2 = (B4 2))*/2 Kx(67)

Various subfamilies of the GH class are of interest in their own right:

Z

@ taking 8 = 0 gives the symmetric generalized hyperbolic class;
taking A = 1 gives the hyperbolic class;

taking A =1 and 8 = 0 gives the symmetric hyperbolic class;
taking § = 0 and 3 = 0 gives the symmetric variance-gamma class;

taking « = 8 =0 and A = —v/2 gives a Student-t, distribution.
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Data Set
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Figure: 1990-2009 daily Stock indices (S&P500, FTSE, DAX, NIKKEI, CAC40) adjusted by US

currency
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Maximum likelihood estimation for HMM

The log-likelihood function of an observed sequence r, 1, ..., rm of returns is
5(01,92; n,..., rm) = |Og (7TF(I‘1; 91,92)PF(I‘2; 91, 02)P N PF(I‘,—,,; 91, 02)1)

= (m m2), F(f;91792):< o) f(r;02) )7 1= ( } )

Then we can calculate maximume-likelihood estimators for the parameters by assuming
that the returns are symmetric hyperbolic.

where
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.., Fm of returns is
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that the returns are symmetric hyperbolic.

where

lag number

Figure: autocovariances of absolute return with 50 lags (1990-2009 daily S&P500)
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Maximum likelihood estimation for HMM

The log-likelihood function of an observed sequence r, 1, ..., rm of returns is
6(91,02; n,..., rm) = |Og (7rF(r1; 91,92)PF(I‘2; 91, 02)P e PF(I‘m; 91, 92)1)

T = (m1 m2), F(f;91792):< e f(r; 62) )’ 1= ( } )

Then we can calculate maximume-likelihood estimators for the parameters by assuming
that the returns are symmetric hyperbolic.

where

We therefore introduce a penalty function to improve the fit:

P(61,62) AZ Pr— pi)°

where w is the total lag number for summation, A is the scalar of the penalty function,
and px and pi are theoretical and empirical autocovariances of absolute returns with k
lags. Explicitly, we maximize

£(91.92; r,..., rm) — 73(91,92)‘
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Maximum likelihood estimation for HMM

ACF
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lag number

Figure: autocovariances of absolute return with penalty function (1990-2009 daily S&P500)
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Maximum likelihood estimation for HMM

10

ACF

10 o 10 20 30 40 50

lag number

Figure: autocovariances of absolute return with common Markov chain (1990-2009 daily
S&P500)
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Kolmogorov-Smirnov (KS) test of unconditional log return distribution

@ Individual Markov chain for each index, all of four distributions can pass the test;

@ For common Markov chain, the highest significance level

symmetric variance-gamma 91.46%
symmetric hyperbolic 89.07%
hyperbolic 78.28%

symmetric generalized hyperbolic 90.70%

@ Regime distribution: symmetric hyperbolic / hyperbolic.
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Posterior probability
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Figure: 2008-2009 daily posterior probability of being in 'good mood’ (10-day moving average)
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> slow decay ACF of the absolute returns is well captured.

@ A common regime model (based on symmetric hyperbolic / hyperbolic)

> explains simultaneously the statistics for five indices;

> reveals an economic significance to the regime of HMM, corresponding 'good time’
and 'bad time’.

¢

Applications: Optimal investment, Option pricing;

©

Why not log-Lévy ?
Why not GARCH?

@ Stochastic Volatility Model? Maybe...

¢
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Heteroskedasticity

Realized variance of 29 SP500 stocks, 200 day moving average

Realized quadratic variation of 29 stocks from S&P500
(taking 200-day moving averages, 2000.07 - 2010.07 )
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