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What’s the story?

When you have eliminated all which is impossible, then whatever remains,
however improbable, must be the truth.

– ”The Adventure of the Blanched Soldier”
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Stylized facts of asset returns

Log returns are not Gaussian;

Log returns are not autocorrelated;

Absolute log returns are serially correlated;

Aggregational gaussianity;

Volatility clustering;

Gain/loss asymmetry;
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Regime switching model (HMM);

◮ market returns flip between different regimes according to a Markov chain;

◮ ’volatility clustering’ can be explained;

◮ ’absence of autocorrelations in log returns’ can be achieved;
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Two-regime Markovian Model

An unobserved ergodic Markov chain (ξn)n∈Z. Independently of ξ, we have two sequences
(X i

n)n∈Z of independent random variables, i = 1, 2, with X i
n ∼ Fi for all n and i , in terms

of which the return rn on day n is
P2

i=1 I{ξn=i}X
i
n. Let µi denote the mean of regime i .
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n)n∈Z of independent random variables, i = 1, 2, with X i
n ∼ Fi for all n and i , in terms

of which the return rn on day n is
P2

i=1 I{ξn=i}X
i
n. Let µi denote the mean of regime i .

Proposition

Suppose that µ1 = µ2 = µ. Then E[rnrn+k ] = µ2 for any k > 0 and n ∈ Z.

Proof. Fix k > 0 and let X ≡ σ(ξm, m ∈ Z). We see that

E[rnrn+k ] = E[E[rnrn+k | X ]]

=

2
X

i=1

2
X

j=1

E[E[X i
nX

j

n+k | X ]; ξn = i , ξn+k = j]

=
2

X

i=1

2
X

j=1

E[µiµj ; ξn = i , ξn+k = j]

= µ2,

using the fact that the X ’s are independent of X and of each other, and then using the
hypothesis that µ1 = µ2.
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Autocovariance of absolute returns

The autocorrelation of absolute returns has been found to decay quite slowly with lag
(Granger et al. 2000). If we set π as the invariant law of ξ and

νi =

Z

|x − µ| Fi (dx)

for the (centered) absolute first moment in regime i , we find that

8

<

:

E|rn − µ| = π1ν1 + π2ν2

E|(rn − µ)(rn+k − µ)| =
`

π1ν1 π2ν2

´

Pk

„

ν1

ν2

«

.
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It now follows that the covariance of the centred absolute returns is given by (for k > 0)

cov(|rn − µ|, |rn+k − µ|) =
`

π1ν1 π2ν2

´

„

P
k −

„

1
1

«

`

π1 π2

´

« „

ν1

ν2

«

=
`

π1ν1 π2ν2

´

vλk
u

T

„

ν1

ν2

«

,

where λ is the eigenvalue of P different from 1, and v (respectively, u) is the right
(respectively, left) eigenvector of λ.
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α
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Data Set

Figure: 1990-2009 daily Stock indices (S&P500, FTSE, DAX, NIKKEI, CAC40) adjusted by US
currency

Rogers and Zhang (2010) Understanding Asset Returns 12 / 20



Table of Contents

1 Introduction

2 Model Setup

3 Data Set

4 Calibration and results

5 Conclusions

Rogers and Zhang (2010) Understanding Asset Returns 13 / 20



Maximum likelihood estimation for HMM

The log-likelihood function of an observed sequence r1, r2, . . . , rm of returns is

L(θ1, θ2; r1, . . . , rm) = log (πF (r1; θ1, θ2)PF (r2; θ1, θ2)P · · ·PF (rm; θ1, θ2)1)

where

π = (π1 π2), F (r ; θ1, θ2) =

„

f (r ; θ1)
f (r ; θ2)

«

, 1 =

„

1
1

«

.

Then we can calculate maximum-likelihood estimators for the parameters by assuming
that the returns are symmetric hyperbolic.
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where

π = (π1 π2), F (r ; θ1, θ2) =

„

f (r ; θ1)
f (r ; θ2)

«

, 1 =

„

1
1

«

.

Then we can calculate maximum-likelihood estimators for the parameters by assuming
that the returns are symmetric hyperbolic.

We therefore introduce a penalty function to improve the fit:

P(θ1, θ2) = A

w
X

k=0

(ρ̂k − ρk)
2

where w is the total lag number for summation, A is the scalar of the penalty function,
and ρ̂k and ρk are theoretical and empirical autocovariances of absolute returns with k

lags. Explicitly, we maximize

L(θ1, θ2; r1, . . . , rm) − P(θ1, θ2).
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Maximum likelihood estimation for HMM
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Figure: autocovariances of absolute return with penalty function (1990-2009 daily S&P500)
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Maximum likelihood estimation for HMM
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Figure: autocovariances of absolute return with common Markov chain (1990-2009 daily
S&P500)
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Individual Markov chain for each index, all of four distributions can pass the test;

For common Markov chain, the highest significance level

symmetric variance-gamma 91.46%

symmetric hyperbolic 89.07%

hyperbolic 78.28%

symmetric generalized hyperbolic 90.70%

Regime distribution: symmetric hyperbolic / hyperbolic.
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Posterior probability
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Figure: 2008-2009 daily posterior probability of being in ’good mood’ (10-day moving average)
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Heteroskedasticity
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