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Quantum mass ratio.

The quantum mass ratio is a random variable with pdf

f (w) =
aw2

ebw − 1
, w ≥ 0

where the constants a, b > 0 are such that∫ ∞
0

f (w)dw = 1 and

∫ ∞
0

log(w)f (w)dw = 0
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We can look at a more general class of pdf’s

f (w) =
aw s−1

ebw − 1
, w ≥ 0

for s > 1.
(The quantum mass ratio corresponds to s = 3)
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Proposition

If

a =
bs

Γ(s)ζ(s)
and log b =

Γ′(s)

Γ(s)
+
ζ ′(s)

ζ(s)

then ∫ ∞
0

f (w)dw = 1 and

∫ ∞
0

log(w)f (w)dw = 0

where

Γ(s) =

∫ ∞
0

x s−1e−xdx and ζ(s) =
∞∑
n=1

1

ns
.
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The proposition is a consequence of the identity∫ ∞
0

x s−1dx

ex − 1
=

∫ ∞
0

∞∑
n=1

x s−1e−nxdx

=

∫ ∞
0

∞∑
n=1

n−sy s−1e−ydy

= Γ(s)ζ(s)
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In particular, if the random variable W has pdf f then the
moments can be calculated

E W t =
Γ(t + s)ζ(t + s)

btΓ(s)ζ(s)
.

and even

E (log W )n =
1

Γ(s)ζ(s)

n∑
k=0

(
n

k

)
(− log b)n−k

dk

dsk
[Γ(s)ζ(s)]
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Proposition

Suppose the random variable Ws has the pdf with parameter s.
Then √

s log Ws → N(0, 1) as s →∞.

Mike Tehranchi Discussion



Stationary stochastic processes.

Let X = {X (t) : t ∈ R} be a stochastic process, such that

E[X (t)] = 0

and
E[X (t)2] = σ2 <∞

for all t.
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Suppose that X is stationary in the sense that there is function ρ
such that

E[X (s)X (t)] = σ2ρ(t − s)

for all s, t.
Suppose ρ is integrable, and let

θ =

∫ ∞
−∞

ρ(u)du.

Mike Tehranchi Discussion



Define the locally averaged process

XD(t) =
1

2D

∫ D

−D
X (u + t)du

Then

γ(D) =
E[XD(t)2]

E[X (t)2]

=
1

D2

∫ D

−D
(D − |u|)ρ(u)du
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Proposition

lim
D→∞

D γ(D) = θ.

Proof.
l’Hôpital’s rule.
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Theorem
Suppose ρ is continuous. Then there exists a probability measure µ
such that

ρ(t) =

∫
e itxµ(dx).

Proof.
Bochner’s theorem characterises the Fourier transform of a finite
measure.
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Theorem
There exists a pdf g such that

µ(dx) = g(x)dx ,

given by the formula

g(x) =
1

2π

∫ ∞
−∞

e−itxρ(t)dt.

In particular,
θ = 2πg(0).

Proof.
This is the Fourier inversion formula.
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An application: random fields in finance

Let P(t,T ) denote the price at time t of a zero-coupon bond
worth one unit of cash at time T .

f (t,T ) = − ∂

∂T
log P(t,T )

denotes the instantaneous forward rate.
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The forward rate surface can be modelled as a Gaussian random
field (Kennedy 1994):

E[f (t,T )] = µ(t,T )

Cov[f (s, S), f (t,T )] = C (s, t; S ,T )
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Proposition

Suppose that covariance has the form

C (s,S ; t,T ) = cs∧t(S ,T ).

Then, for each fixed T > 0, the increments of (f (t,T ))t∈[0,T ] are
independent.
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Theorem (Heath–Jarrow–Morton 1992, Kennedy 1994)

If

µ(t,T ) = f (0,T ) +

∫ T

0
ct∧s(s,T )ds.

then there is no arbitrage in the bond market with prices

P(t,T ) = exp

(
−
∫ T

t
f (t, u) du

)
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Interesting case Let

rt(x) = f (t, t + x).

Suppose there is a space of functions F such that rt(·, ω) ∈ F for
all (t, ω).

One can regard (rt)t≥0 as Gaussian Markov process valued in F .
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Infinite-dimensional Ornstein–Uhlenbeck process

drt =

(
∂rt
∂x

+ µ

)
dt + σdWt

Sufficient conditions for ergodicity found in Vargiolou 1999,
Tehranchi 2005.
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