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Abstract

The state-price density (SPD) implicit in option prices can be estimated using nonpara-

metric time series regression, as first done by Aı̈t-Sahalia and Lo (1998). This paper uses high

frequency data to estimate the SPD using a kernel regression locally around the time point

of interest. The call pricing function is allowed to vary smoothly over time which is aligned

with time-varying preferences and beliefs. We show consistency and asymptotic normality of

our estimator under infill asymptotics, when the traded strike prices follow a mixing, locally

stationary time series. To allow for random and possibly endogenous trading times, we gen-

eralize the results in Vogt (2012) towards sampling times described by point processes. We

investigate a data driven choice of the sampling windows that automatically adapts to the

speed of information flow in the market. In an application to S&P 500 E-mini European call

and put options we discuss the properties of the local-in-time cross-validated bandwidths.

Keywords: Option Pricing, Kernel Regression, High Frequency Data, Local Stationarity

JEL Codes: C14, G13

1 Introduction

Option prices contain detailed information about the expectations and preferences of market

participants. This information is summarized in the state-price density (SPD), which gives the

prices of Arrow-Debreu securities that pay out when the underlying asset ends up within the

infinitesimal interval (x, x + dx) for varying levels of the outcome x. High values of the SPD in

a particular part of the distribution indicate a high marginal rate of substitution for wealth in
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Ito, Alexei Onatski, Eric Renault, Mike Tehranchi, Steve Thiele, Jasmine Xiao, and seminar participants in the
Econometrics Workshop at the University of Cambridge for helpful comments. Financial support by CERF is
gratefully acknowledged.

1



these states. For example, a thick left tail indicates a high market price for insurance against

large losses.

Estimators of the SPD are useful in at least four contexts. First, they allow practitioners to

compute the no-arbitrage price of new or illiquid derivatives simply by integration. They can

also be used to filter out the pricing error in observed option prices, which prevents biases in

implied volatilities (Chen and Xu, 2014). Second, risk managers can compute market-implied

values of risk measures such as Value-at-Risk and Expected Shortfall directly from the SPD for

the maturity of interest (Aı̈t-Sahalia and Lo, 2000). Third, event studies measure changes in

the SPD to analyze the impact of economic events to investor beliefs and preferences Beber and

Brandt (2006). Finally, together with an estimator of the objective density from historical data

it allows computing empirical pricing kernels (Rosenberg and Engle, 2000). These can be related

to the risk preferences of a representative agent in consumption based equilibrium models. The

finding that the implied Arrow-Pratt risk aversion coefficient does not monotonically decrease

with wealth has been referred to as the ‘pricing kernel puzzle’ (Jackwerth, 2000).

Both parametric and nonparametric estimation approaches have been proposed. The former

requires parametrizing both the dynamics of the underlying asset and the utility function of

a representative investor. The resulting theoretical option prices yield the moment conditions

which can be estimated by GMM techniques. However the classical Black-Scholes model with

a lognormal SPD provides poor fit to the data, as evidenced by the implied volatility smile.

Also more flexible parametric models have been reported to miss important features of the data

(Bakshi et al., 1997). As a result, estimated risk premia are notably sensitive to the precise model

specification (Broadie et al., 2007).

In the nonparametric approach usually no specific model is assumed for the asset return

dynamics or the SPD. Instead, Aı̈t-Sahalia and Lo (1998) proposed to estimate the call pricing

function via nonparametric regression of the observed call prices on variables as stock price, strike

price, and time-to-maturity. The SPD is then obtained from the second derivative of call pricing

function with respect to the strike price using the result by Breeden and Litzenberger (1978).

Proposed estimation methods include kernel smoothers (Aı̈t-Sahalia and Lo, 1998; Aı̈t-Sahalia

and Duarte, 2003), smoothing splines (Yatchew and Härdle, 2006), and methods based on the

shape constraints required by the absence of arbitrage.

An important difference in the literature is the horizon over which option prices are pooled

together. Aı̈t-Sahalia and Lo (1998) and other early studies are based on sampling periods that

may span multiple years, during which the SPD is treated as a constant function of time-to-

maturity. Their estimate of the SPD can therefore be interpreted as some average SPD over

the sample period, rather than a point estimate for a given point in time. More recently, the

increasing availability of high frequency data has allowed large enough sample sizes to estimate
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SPDs using only one or a few trading days (e.g. Härdle and Hlavka (2009), Chen and Xu (2014)).

This motivates the use of infill asymptotics, where consistent estimators are obtained by letting

the number of observations within a fixed interval go to infinity. Still, it is typically assumed that

the SPD for given time-to-maturity is constant over some interval chosen by the econometrician.

Our paper aims to relax this assumption by allowing the regression function to vary smoothly

over time. This is achieved by using a kernel estimator that fits a regression curve around each

time point of interest. Such an estimator is able to capture changes in the option pricing function

due to information becoming available during trading time. This allows a direct way to measure

updates in investor beliefs and risk aversion in response to market events. Smoothing in time

requires a sampling window to be chosen for each time point of interest. We investigate a data

driven choice of the sampling windows that automatically adapts to the speed of the information

flow in the market. This makes it possible to find an appropriate bias-variance trade-off which

would be neglected when using a fixed sampling period such as a day or a week.

The theoretical treatment of the time-varying kernel regressor is set up generally, as it may be

of interest beyond our application to option pricing. As a theoretical contribution we generalize

the asymptotic normality result in Vogt (2012) on locally stationary time series towards random

sampling times. Since these may endogenously determined with the covariate, we wish to avoid

conditioning on them and instead consider the sampling variability due to the sampling times

themselves. This is motivated by recent work on the informational content of endogenous trading

times (e.g. Li et al. (2009), Renault and Werker (2011)). In particular we model the sampling

times as a point process with a conditional intensity function that may depend on both its own

history as well as that of the covariates. This framework can incorporate the main empirical

features of trading times, such as clustering behaviour, interaction with covariates, and time-

of-the-day effects which cause non-stationary trading volume. We discuss appropriate mixing

conditions for both the point process and the covariate such that, when the mean intensity goes

to infinity, the time-varying kernel estimator is asymptotically normal with the same variance

as when the observations were independent. We illustrate these conditions by means of Hawkes

processes, both self-exciting and driven by the covariate.

In the application to state-price density estimation we apply the time-varying kernel estimator

to data on transaction prices and bid and ask quotes on S&P 500 E-mini European call and put

options. We discuss dimension reductions such that the option pricing function can be represented

as an unknown function of time and moneyness of the option only. We show how our estimator

can be used to study the dynamic behaviour of the state-price density, over both interday and

intraday periods. The bandwidths are chosen by a local-in-time cross validation method, which

leads to sampling windows during trading time typically to be a couple hours for transactions

data, and five minutes to half an hour for bid and ask quotes.
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The remainder of this research proposal is organized as follows. Section 2 provides the theo-

retical treatment of our time-varying kernel regressor under random sampling times. Section 3

discusses the application of this estimator in state-price density estimation, and provides empirical

results. Section 4 concludes.

2 Time-varying kernel regression with random sampling times

Nonparametric time series regression typically assumes that the functional form of the regression

relationship between two time series is unknown, yet constant throughout the sample. Estimators

are then consistent when the time span becomes infinitely large under general mixing conditions

(see e.g. Robinson (1983), Bosq (1996)). However, for some applications it may be not be realistic

to treat the regression function as time-invariant. In such cases the conditional expectation

E(Yt|Xt = x) =: m(t, x) is a function of both t and x. An increasing time span now no longer

guarantees consistent estimators, as this requires a growing amount of observations locally around

the time point of interest.

When the data is of the type that there is a large number of observations even within small time

windows, such as with high frequency data in finance, such local information on the dependency

between the time series is in fact available. This motivates the use of asymptotic analysis based

on infill asymptotics. In particular, we study the asymptotic properties of a kernel smoother

which smoothes in both the state and the time domain, when the number of observations within

a fixed time interval goes to infinity. There are many financial applications that use smoothing

in the time domain in the infill setting, for example to estimate spot volatility (e.g. Barndorff-

Nielsen et al. (2008), Kristensen (2010)), spot covariation (e.g. Barndorff-Nielsen and Shephard

(2004), Zhang (2011)), or time-varying betas for diffusions Mykland et al. (2006). Typically,

the data are treated as discrete observations from a continuous semimartingale, such as an Itô

process. When the mesh of the grid of observations goes to zero, the complete sample path of

the process becomes known and can be used to estimate continuous time models (for an overview

see Aı̈t-Sahalia (2007)). However, for data constructed in this way simultaneously smoothing in

the state dimension is generally not possible. To see this, note that continuity implies that the

range of observed value of the semimartingale can be chosen arbitrary small by letting the time

band become small enough. Hence in the limit only the value at that particular time point is

observed, from which clearly no consistent estimator can be created.

Instead, we treat our covariate as a discrete time series, which, within any given time interval,

visits all points in its range infinitely often when the sample size goes to infinity. This ensures

there is sufficient variation in the covariate around each point in time. To achieve this, we adapt

strong mixing conditions to the setting where the observation become close to each other in
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calendar time. In combination with a local stationarity condition on the covariate, this suffices

to achieve consistent estimators of the regression function at each point in (calendar) time. Our

setting is very similar to that of Vogt (2012), who shows the consistency of the time-varying kernel

regressor for locally stationary covariates. Although Vogt (2012) considers long span asymptotics,

consistency is derived in rescaled time. Hence his results can be shown to carry over to our setting

up to a rescaling of the time dimension to the unit interval.

Besides adapting the results in Vogt (2012) to the infill asymptotic setting, we also gener-

alize them to allow for random sampling times which are possible dependent on the covariates.

Therefore we derive the unconditional distribution of our estimator, when the sampling times

are modelled as a point process. To allow interaction with the covariate we allow the conditional

intensity function to depend on both its own history as well as that of the covariates. Similar

issues are studied in the literature on marked point processes, see for example Ellis (1991) and

Pawlas (2009) for results on density estimation for a stationary regressor observed at random time

points. The effect of random sampling times on estimators using high frequency data has been

emphasized in Aı̈t-Sahalia and Mykland (2003), and Duffie and Glynn (2004), among others.

2.1 Model

Let {(Yi,n, Xi,n)} be a bivariate stochastic process, observed at the random times {ti,n}. We

restrict attention to the case where Yi,n and Xi,n are observed synchronously. The sampling

times {ti,n} are modelled as a point process and associated with the counting measure Nn(a, b) =

#{i : a ≤ ti,n ≤ b}.2 Define also the counting process Nn(t) := Nn(0, t) of the number of events

up to time t ∈ R. Throughout we use double-index notation, where the second index n creates

a sequence of point processes with increasing mean arrival rate. This is made more precise in

Section 2.3. The information flow for each n is described by the natural filtration FNt,n and Fxt,n
of the counting process {Nn(t)} and the covariates {Xi,n} observed before time t, respectively,

and their joint filtration Ft,n = FNt,n
⋃
Fxt,n.

Consider the time-varying nonparametric regression model

Yi,n = m(ti,n, Xi,n) + εi,n, (1)

with E(εi,n|ti,n, Xi,n) = 0 and Var(εi,n|ti,n = t,Xi,n = x) = σ2(t, x). Note m(t, x) is the condi-

tional expectation of Yi,n given its observation time ti,n = t and the covariate Xi,n = x. We are

interested in estimating m(·) on a fixed time interval (0, T ), hence the number of observations in

our sample is Nn(0, T ).

2Formally, {(ti,n, Yi,n, Xi,n)} is a univariate marked point process, with bivariate vector of marks (Yi,n, Xi,n).
In the case of a asynchronous sampling times, this would be a bivariate marked point process, with univariate
marks.
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2.2 Estimator

From now on without loss of generality we set T = 1. A natural estimator for m(·) at the design

point (t, x) is the Nadaraya-Watson (or locally constant) kernel estimator

m̂h(t, x; 0) =

∑Nn(1)
i=Nn(0)+1Kht(t− ti,n)Khx(x−Xi,n)Yi,n∑Nn(1)
i=Nn(0)+1Kht(t− ti,n)Khx(x−Xi,n)

, (2)

with Kh(·) = 1
hK( ·h) for some kernel function K. This estimator takes a weighted average over

points close to (t, x), where the weights are controlled by the bandwidths ht and hx for the time

and state dimension, respectively. The kernel smoothing method can be generalized to fitting a

local polynomial around (t, x), yet for ease of exposition we stick to the locally constant estimator.

Note that if the kernel has a bounded support, say, [−1, 1], then for any t ∈ (ht, 1− ht) the sum

in (2) has only Nn(t − ht, t + ht) non-zero terms. In this case the sum needs only to be taken

from i = Nn(t − ht) + 1 to i = Nn(t + ht). We aim to study the limiting distribution of this

estimator when n goes to infinity, that is, when the expected number of observations within the

interval becomes infinitely large.

2.3 Random sampling times

We assume that the counting processes are such that for every n and t ∈ R

P(Nn(t, t+ ∆) = 1|FNt ,Fxt ) = λn(t)∆ + oP (∆),

P(Nn(t, t+ ∆) > 1|FNt ,Fxt ) = oP (∆),

for ∆ → 0, which defines the conditional intensity function λn(t). Note in particular that λn(t)

depends on both past event times as well as past observed covariates. We denote its unconditional

expectation by λ̄n(t) := E(λn(t)). The second property is known as orderliness and ensures there

are no simultaneous events, see Daley and Vere-Jones (2003) for details. This implies that

Var(dNn(t)) = E{(dNn(t))2} = E(dNn(t)) = λ̄n(t)dt.

Furthermore assume that Nn(t) admits a covariance density, defined for t 6= s by

µn(t, s) =
Cov(Nn(t, t+ dt), Nn(s, s+ ds))

dtds
,

while µn(t, t) is defined such that the function is continuous.

The following conditions require the average intensity and covariance density at each time

point to be proportional to n and n2, respectively:
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(C1) λ̄n(t)
n < C for some C < ∞ for every t, λ̄n(t) is twice differentiable on (0, 1) for every n,

and
λ̄n(t)

n
→ ν(t), (3)

for some twice differentiable function ν(t), satisfying inf
t∈(0,1)

ν(t) > 0 and sup
t∈(0,1)

ν(t) <∞.

(C2) For each time t ∈ (0, 1) there exists a function γt : R 7→ R, with

η(t) :=

∫ ∞
−∞

γt(τ)dτ <∞,

such that
µn(t, t+ τ

n)

n2
→ γt(τ),

and
∣∣∣µn(t,t+ τ

n
)

n2

∣∣∣ ≤M(τ) for some integrable function M : R 7→ R+ independent of t.

Example. A natural specification of the sequence of counting processes {Nn(t)} is

Nn(t) = N

(
n

∫ t

0
π(s)ds

)
, (4)

for t ∈ (0, 1), where N(·) is a stationary point process with intensity ρ and covariance density

µ(·). In this specification the index n ‘speeds up the clock’, whereas the function π : (0, 1) 7→

R+ captures a deterministic pattern in the mean intensity, satisfying without loss of generality∫ 1
0 π(s)ds = 1. It holds that

ν(t) = lim
n→∞

λ̄n(t)

n
= ρπ(t),

γt(τ) = lim
n→∞

µn(t, t+ τ
n)

n2
= π2(t)µ(τπ(t)).

The point process notation allows us to write the sums in (2) as integrals with respect to the

counting measure Nn(t). For example, for t ∈ (ht, 1− ht),

Nn(1)∑
i=Nn(0)+1

Kht(t− ti,n) =

∫ t+ht

t−ht
Kht(t− u)Nn(du). (5)

Now suppose we are interested in using ν̂h(t) = 1
n

∑Nn(1)
i=Nn(0)+1Kht(t− ti,n) as an estimator of the

average local intensity ν(t). Provided the bandwidth satisfies ht → 0, nht →∞, and

(C3)

sup
t∈(0,1)

∣∣∣ λ̄n(t)

n
− ν(t)

∣∣∣ = o(h2
t ),
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then when n→∞, ν̂h(t) has expectation

E (ν̂h(t)) =
1

n

∫ t+ht

t−ht
Kht(t− u)λ̄n(u)du

= ν(t) +
1

2
µ2(K)h2

t ν
′′(t) + o(h2

t ),

and variance (see Appendix)

Var (ν̂h(t)) =
R(K)

nht
{ν(t) + η(t)}+ o

(
1

nht

)
. (6)

Hence combining terms, the asymptotic MSE of ν̂h(t) is given by

E (ν̂h(t)− ν(t))2 =
1

4
µ2

2(K)h4
t ν
′′(t)2 +

R(K)

nht
(ν(t) + η(t)) + o

(
h4
t +

1

nht

)
. (7)

This is minimized by the bandwidth

h∗AMSE(t) =

(
{ν(t) + η(t)}R(K)

nν ′′(t)2µ2
2(K)

) 1
5

. (8)

Example. The linear self-exciting process by Hawkes (1971) has conditional intensity function

λ(t) = φ+

∫ t

−∞
g(t− u)N(du), (9)

for some parameter ν and non-negative ‘infectivity’ function g(·). A common choice is the ex-

ponential model g(u) = αe−βu, in which case the process is stationary for α
β < 1, with mean

intensity ρ = φβ
β−α and covariance density µ(t, s) = αρ(2β−α)

2(β−α) e
−(β−α)|t−s| for any (t, s). In the

speeding-up setting of (4) with N(·) a Hawkes process, we find that

ν(t) =
π(t)φβ

β − α
,

η(t) =

∫ ∞
−∞

π2(t)µ(τπ(t))dτ =
π(t)αφ(2β − α)

β − α
.

Hence when the bandwidth for the smoother is chosen based on the Hawkes model, (8) reduces

to

h∗AMSE(t) =

(
π(t)(1− α/β)(1 + α(2− α/β))R(K)

nφπ′′(t)2µ2
2(K)

) 1
5

.
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2.4 Asymptotic normality

For the asymptotic analysis we need to impose some mixing conditions on both the covariates and

error as well as on the point process. Therefore we adapt the usual mixing conditions to the infill

setting. For point processes it is common to assume that the number of events within two non-

overlapping time intervals become independent once they are sufficiently far apart. Now, since

the expected number of observations grows with n, it makes sense to let the distance between

two time intervals depend on n too. This is reflected in the mixing condition below. First we

introduce the notation

X{u},n := XNn(u),n,

and similarly for ε{u},n. Note that X{u},n is a piecewise deterministic, cáglád function on the real

line. It can be seen as the value of the covariate after the last jump before or at time u. Also

define

Fba,n = σ{Nn(A), A ⊆ (a, b), X{t},n : a ≤ t ≤ b}.

Definition. (i) A marked point processes (N(t), X{t}) with natural filtration Ft is α-mixing if

α(s)→ 0 when s→∞, where

α(s) = sup
A∈Fu−∞,B∈F∞v
|v−u|≥s

|P(A ∩B)− P(A)P(B)| (10)

(ii) A sequence of marked point processes (Nn(t), X{t},n) with family of natural filtrations {Ft,n}is

α-mixing in rescaled time if α(s)→ 0 when s→∞, where

α(s) = sup
n≥1

sup
A∈Fu−∞,n,B∈F∞v,n

|v−u|≥ s
n

|P(A ∩B)− P(A)P(B)| (11)

Part (i) in this definition is a standard mixing conditions for point processes to be found

for example in Cranwell and Weiss (1978), or for marked point processes in Pawlas (2009).

The mixing condition in rescaled time in part (ii) differs from this one in that for each n, the

supremum is taken over intervals whose gap is at least s
n . This requires the dependency to vanish

proportional to the expected number of observations, or equivalently the integrated intensity, in

between intervals, rather than their mere distance in time. This imposes some restrictions on the

dependency structure for different n. Informally, the effective distance between two time intervals

grows with the amount of information in between them.

Example. (cont.) In the speeding-up setting of (4), it follows almost straight from the definition

that α-mixing (in the usual sense) of the baseline process N(t) ensures that the sequence of point

processes {Nn(t)} is α-mixing in rescaled time.
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Hence we impose the following condition on the point process:

(C4) {(Nn(t), X{t},n, ε{t},n)} is α-mixing in rescaled time, with the mixing coefficients satisfying

∫ ∞
0

wλα(w)1−2/δdw <∞, for some λ > 1− 2/δ (12)

Since we are interested in estimating a regression function locally in time, we do not need to im-

pose global stationarity of the covariates. Instead, we only require the following local stationarity

condition, which is slight adaptation of the one in Vogt (2012) to allow for an unequally spaced

grid:

(C5) The process {Xi,n} observed at times {ti,n} is locally stationary (see e.g. Vogt (2012)), i.e.

for each time point t ∈ [0, 1] there an exists a stationary process {X∗i,n(t)}, such that

|Xi,n −X∗i,n(t)| ≤
(∣∣ti,n − t∣∣+

1

n

)
Ui,n(t) a.s.,

where Ui,n(t) is a positive-valued process satisfying E(Ui,n(t)ρ
∣∣ti,n) < C a.s. for some ρ > 0

and C <∞ independent of t, i, and n.

Furthermore, we require the following regularity conditions:

(C6) The stationary process X∗i,n(t) has density f(t, x) > 0 independent of i and n for all (t, x) ∈

(0, 1)× S with S a compact subset of R. Here f(t, x) is bounded bounded for every t and

continuously differentiable w.r.t t for every x. Furthermore the density fXi,n , the conditional

density fεi,n|Xi,n and the joint conditional density fεi,n,εj,n|Xi,n,Xj,n are bounded for every i,

j and n.

(C7) The kernel K is a density, symmetric around zero and with zero value outside [−1, 1]. Define

R(K) =
∫
K2(x)dx < ∞ and µ2(K) =

∫
x2K(x)dx < ∞. Furthermore K is bounded and

Lipschitz continuous, i.e. there exists an L < ∞ such that |K(u) − K(v)| ≤ L|u − v| for

every u, v ∈ R.

(C8) The regression function m(t, x) is twice continuously partially differentiable and Lipschitz

continuous w.r.t. t and x. σ(t, x) > 0 is continuously differentiable in both arguments.

(C9) E
∣∣εi,n∣∣2+δ

<∞ for every i, n for some δ > 0

(C10) The bandwidths satisfy ht → 0, hx → 0, nhthx → ∞, nh5
thx = O(1), nhth

5
x = O(1),

ht(nhx)1−2r → 0 with r = min(ρ, 1), and (nht)
1−εh

λ(2+δ)+2+2δ
λ(2+δ)+2

x = O(1) for some ε > 0.

Theorem 1. Let (C1)-(C10) hold. Then for (t, x) ∈ (ht, 1− ht)× S

√
nhthx(m̂h(t, x; 0)−m(t, x)−B(t, x))

d−→ N(0, V (t, x)), (13)
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where the asymptotic bias is given by

B(t, x) = h2
tµ2(K)

(
∂

∂t
m(t, x)

∂

∂t
log(f(t, x)ν(t)) +

1

2

∂2

∂t2
m(t, x)

)
+ h2

xµ2(K)

(
∂

∂x
m(t, x)

∂

∂x
log f(t, x) +

1

2

∂2

∂x2
m(t, x)

)
+ o(h2

t + h2
x), (14)

and the asymptotic variance by

V (t, x) =
R2(K)σ2(t, x)

nhthxν(t)f(t, x)
+ o

(
1

nhthx

)
. (15)

This result shows that the asymptotic distribution of our estimator is the same as that when

the observations would be independent of each other, since the covariance function of neither the

covariates or the point process shows up in the asymptotic variance. We also see that compared

to deterministic sampling times, random sampling times lead to the additional term ν(t) in the

asymptotic bias and variance expressions. For example, a higher mean intensity leads to more

observations and hence to a lower variance. Note that this factor depends on the distribution

of the covariates whenever these contribute to the conditional intensity, as illustrated in the

following example.

Example. Suppose that the conditional intensity is specified by the marked Hawkes process

λn(t)

n
= φπ(t) +

∫ t

−∞
h
(
X{u},n

)
g(n(t− u))dNn(u),

where h(·) is a nonnegative, Lipschitz continuous function that captures the impact of the co-

variate, and g(·) is the infectivity function as before, now with its argument scaled by n. Then

it can be shown (see Appendix) that

λ̄n(t)

n
→ φπ(t)

1−
∫
S h(x)f(t, x)dx

∫∞
0 g(τ)dτ

=: ν(t), (16)

provided
∫∞

0 g(τ)dτ <∞,
∫∞

0 τg(τ)dτ <∞, and the stationary condition∫
S
h(x)f(t, x)dx

∫ ∞
0

g(τ)dτ < 1. (17)

Hence the limiting local intensity can be expressed in terms of the density f(t, x) of the stationary

approximation process. The likelihood functions of this and similar models are available (see

Daley and Vere-Jones (2003, §7.3)) and can be used to estimate the parameters in ν(t).
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3 Application: Estimating the State-Price Density from Euro-

pean options

The state-price density (SPD) is a central object in two main branches of asset pricing theory.

In no arbitrage-based models, the SPD is the density of the Equivalent Martingale Measure

(EMM), typically denoted Q, under which all discounted price processes become martingales.

The existence of the EMM follows from the absence of arbitrage, while its uniqueness follows

from market completeness. In this context estimates of the density of Q implicit in option prices

can be used for the pricing and hedging of new or illiquid assets, or to filter out the pricing error

in traded option prices (Chen and Xu, 2014). It can also be used to assess parametric models for

the dynamics of the underlying asset under the Q-measure. A comparison between the theoretical

and the estimated SPD then reveals if the model is able to capture empirical features such as

skewness or fat tails.

In consumption-based equilibrium models, the SPD is the product of the density of the ob-

jective measure P, and a stochastic discount factor or pricing kernel. The latter is proportional

to the marginal rate of substitution over states of a representative agent. Hence an estimator

of the SPD combined with an estimator of the objective density allows computing so-called em-

pirical pricing kernels (EPK) (Rosenberg and Engle, 2000). These can be used to infer the risk

aversion of investors over different levels of wealth at a certain maturity. The finding that the

implied Arrow-Pratt risk aversion coefficient does not monotonically decrease with wealth has

been referred to as the ‘pricing kernel puzzle’ (Jackwerth, 2000).

The call pricing function can be estimated via a nonparametric regression of observed call

prices on their trade characteristics stock price, strike price, and time-to-maturity (Aı̈t-Sahalia

and Lo, 1998). The SPD is then obtained from the second derivative of call pricing function with

respect to the strike price, using the result by Breeden and Litzenberger (1978). The availabil-

ity of intraday option prices greatly enhances the applicability of data-intensive nonparametric

methods for estimating the SPD. Proposed methods include kernel smoothers (Aı̈t-Sahalia and

Lo, 1998; Aı̈t-Sahalia and Duarte, 2003), smoothing splines (Yatchew and Härdle, 2006), and

various methods based on the shape constraints required by the absence of arbitrage.

An important difference in the literature is the horizon over which option prices are pooled

together. Aı̈t-Sahalia and Lo (1998) assume that call prices over a period of about one year

are generated by the same call pricing function. Their estimate of the SPD can therefore be

interpreted as the average SPD over the sample period, rather than a point estimate for a given

point in time. Alternatively, Aı̈t-Sahalia and Duarte (2003) show how a cross-section of option

prices at a given point in time can suffice to get feasible estimates. They use shape constraints

such as monotonicity and convexity to reduce the variance of their estimator. However, since the
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number of traded strikes is limited by the exchange, their estimator is vulnerable to small sample

issues.

Yet whereas the SPD may not be constant in the long run, it likely does exhibit some per-

sistency in the short run. The availability of high frequency options data allows exploiting this

persistency by pooling together data from time points close to each other, say from the same

day or the same hour. The SPD is less likely to vary heavily during small intradaily time win-

dows than for longer sampling periods. Indeed, by now there are a number of studies that use

intradaily options data to estimate the call pricing function, e.g. Härdle and Hlavka (2009) and

Chen and Xu (2014). However, the call pricing function may still vary throughout the day due to

time-of-the-day effects, or indeed changes in the SPD due to new information. Empirical evidence

of such intraday patterns comes from autocorrelation in the errors of a time-homogeneous model

(Härdle and Hlavka, 2009).

This motivates the application of a time-varying regression model for the call pricing function.

This makes it possible to estimate the SPD at any time point of interest, and to study the

dynamics of the SPD over a given sampling period. Rather than having to set an arbitrary

pooling window, such a model is naturally capable to balance the trade-off between increasing

the sample size to reduce variance while controlling the bias due to time-variation in the SPD.

The remainder of this section is organized as follows. First we provide some preliminaries

on the object of interest. Then we demonstrate how its estimation can be done using the time-

varying regression model we introduced in Section 2. Finally we discuss the empirical results

when estimating our model with options data from the E-mini S&P 500.

3.1 Preliminaries

The First Fundamental Theorem of Asset Pricing states that if a market has no arbitrage op-

portunities, then there exists a measure Q ∼ P such that the price process of any traded asset

discounted by the price of a riskfree asset is a Q-martingale. See for example Karatzas and

Shreve (1998) for details. Intuitively, this measure takes account of risk aversion by adjusting the

probabilities in such a way that assets are priced by the expectation of their future payouts. If

all investors would be riskneutral, then the P and Q-measure coincide, which is why Q is also re-

ferred to as the ‘riskneutral’ measure. The Second Fundamental Theorem of Asset Pricing states

that if the market is complete, that is if all contingent claims can be perfectly replicated, then

this measure is unique. Combining these theorems implies that when a contingent claim with

payout ξT is introduced in an arbitrage-free and complete market, its discounted price satisfies

the martingale property
ξt
Bt

= EQ
(
ξT
BT

∣∣∣Ft) , (18)
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Hence its unique no-arbitrage price is given by

ξt = EQ
(
Bt
BT

ξT

∣∣∣Ft) = e−r(T−t)EQ (ξT |Ft) , (19)

where r is the riskfree rate of the bond B.

A European call option is a contingent claim which gives the owner the right but not the

obligation to buy the stock at maturity time T for a given strike price K. Hence its payoff at

maturity equals CT = (ST −K)+, and its unique no-arbitrage price is given by

Ct = e−r(T−t)EQ ((ST −K)+|Ft
)
. (20)

Similarly, a European put option gives the owner the right to sell the stock at maturity for a

given strike price K, and thus has payoff PT = (K − ST )+, and no-arbitrage price

Pt = e−r(T−t)EQ ((K − ST )+|Ft
)
. (21)

Note that (K − ST )+ = K − ST − (ST − K)+, so the payoff of a put option can be replicated

by a linear combination of the bond, the stock, and the call option. As a result, put-call parity

states the following relation between the no-arbitrage prices of put and call options:

Pt = e−r(T−t)K − St + Ct (22)

Provided the measure Q admits a density fQt with respect to the Lebesque measure for information

set Ft, (20) can be expressed as

Ct = e−r(T−t)
∫ ∞
K

(ST −K)fQt (ST )dST . (23)

By differentiating with respect to K, we derive

∂Ct
∂K

= −e−r(T−t)
∫ ∞
K

fQt (ST )dST . (24)

By differentiating once more, as in Breeden and Litzenberger (1978), we derive

∂2Ct
∂K2

= e−r(T−t)fQt,ST (K). (25)

This relation tells that the SPD is proportional to the curvature of the call pricing function. It

forms the theoretical basis for estimation of fQt,ST .

The fact that fQ is a density also puts some restrictions on the call pricing function. In

particular, from (24) and the nonnegativity of the density and its integrability to one, it must
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hold that

−e−r(T−t) ≤ ∂Ct
∂K
≤ 0, (26)

while (25) implies that
∂2Ct
∂K2

≥ 0. (27)

Hence the call pricing function must be decreasing and convex. Any local violation implies neg-

ative state-prices, and hence arbitrage opportunities. No-arbitrage bounds can also be obtained

for the level of the call pricing function, see Aı̈t-Sahalia and Duarte (2003) for details.

3.2 Estimation method

From 23 it can be seen that the no arbitrage price of a call option is determined by the SPD

fQt (ST ), and by the observable variables strike price K, and time-to-maturity T − t. The Breeden

and Litzenberger (1978) result 25 gives the relation (up to integration constants) between the

SPD and the price of a call option C as a function of its strike price K. Hence an estimator of

the SPD follows directly from an estimator of the call pricing function.

However, both the call pricing function and the SPD are random, as they are a conditional ex-

pectation (resp. density) given information in the filtration Ft. Therefore it is convenient to make

a Markov assumption, which states that all relevant information from the past is summarized

by the present level of some state variables. These can either be observed, such as the current

stock price St, or unobserved, such as the spot volatility (Song and Xiu, 2012). As we wish to

avoid specifying which state variables are relevant, we propose to use the current level of the

stock price as the only random state variable, but in addition include time itself in the regressor

set. This means that the randomness in the call prices can only be generated by the underlying

stock price and other observable trade characteristics, yet we are able to capture smooth changes

in the functional form of the dependency of the call price on these variables. This leads to the

nonparametric regression model

Ct = C(t, τ, St,Kt, rt,T ) + εt, (28)

where εt is an error term that satisfies E(εt|Ft) = 0.3

3.2.1 Dimension reduction

Since nonparametric regression is vulnerable to the curse of dimensionality, we make some di-

mension reductions that are common in the literature. Firstly, we will be dealing with options

3Even more generally, the option price may depend on the dividend yield δt,T . For options that are written on
the futures prices, these are incorporated and hence do not affect option prices separately. For options written on
stock prices, they may do so. Still it can be reasonably assumed that the dividend yield enters the option price
only via the futures price Ft,T = Ste

(rt,T−δt,T )τ , see Aı̈t-Sahalia and Lo (1998) for details.
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written on the price of a futures contract FT , rather than price of a stock ST .4 This has the

advantage that the interest rate rt,T only affects the discount factor and not the SPD of the

futures price, so it can simply be removed by discounting the observed call price.5 Specifically, if

we work with the inversely discounted prices Cdt = ert,T (T−t)Ct, then the interest rate rt,T drops

out of the regressor set:

Cdt = C(t, τ, Ft,Kt) + εt. (29)

Second, smoothing in the time-to-maturity dimension τ requires combining information on Euro-

pean option contracts with different maturities. Since the gaps between the maturities that are

traded may take several weeks or even months, a long sampling period is needed to get repeated

observations of the same value of τ . When working with high frequency data from only one or a

few days, this gap cannot be closed and hence it is not possible to cover th points in between the

maturity times. Therefore, high frequency studies typically produce separate estimators for each

maturity T , rather than smoothing between them (e.g. Härdle and Hlavka, 2009). Therefore we

restrict attention to options with the same maturity date T , so that we do not smooth explic-

itly in time-to-maturity dimension τ , and are left with the three-dimensional regression function

C(t, Ft,Kt). As a caution, note that when only one maturity time T is in the sample, then t

and τ are not separately identified. In this case only the combined effect of time variaton due to

being closer to maturity and new information arising is identified. However, for short intradaily

windows the time-to-maturity effect is likely to be small, and might otherwise be controlled for

by an appropriate rescaling of the resulting densities.

Finally, one more dimension reduction can be done by a normalization of the strike prices Kt

by the futures price level Ft at the time of trade. The rationale for this is provided by Merton

(1973, Thm. 9), who shows that if the distribution of the return of the underlying asset S is

independent from the level of S, then the call pricing function is homogeneous of order one in F

and K, i.e.

Ct(F,K) = FCt(1,K/F ). (30)

The condition that the return distribution of the underlying asset is independent from its level can

be straightforwardly checked within a parametric model for the dynamics of the underlying asset.

The class of models that satisfies this assumption includes the widely used geometric Brownian

motion and many stochastic volatility models (Joshi, 2001). Yet in general, this condition may

not be easy to test as it requires measuring changes in the return distribution. Now define the

4If the futures contract has the same maturity as the option, then the prices of a European option written on
the stock and on the futures contract are the same (Aı̈t-Sahalia and Lo, 1998). If the futures contract expires after
the maturity of the option, this need no longer hold. Yet this only matters insofar the resulting estimate is now
the SPD of the futures price, which only differs from that of the stock price by a known discount factor.

5Alternatively, for short, intradaily time windows the interest rate is unlikely to change heavily and can therefore
safely be ignored.
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‘moneyness’ ratio M = K/F , and the normalized option price C̃t = Cdt /Ft. Then, if we assume

this condition for homogeneity holds, we can write the regression function in (29) as

C̃t = m(t,Mt) + εt, (31)

where we assume E(εt|Mt) = 0 and Var(εt|Mt) = σ2(t,Mt). This means that we have reduced

the regression model to a function of only two variables, time t and moneyness Mt.
6

Moreover, homogeneity of F and K implies that the second derivative of the call pricing

function becomes
∂2Cdt
∂K2

=
∂2Ftm(t,K/Ft)

∂K2
=

1

Ft

∂2m(t,M)

∂M2
. (32)

Remembering the Breeden and Litzenberger (1978) result (25), and using the substitution

fQFT /Ft(K/Ft) = fQFT (K)Ft, (33)

we derive that

fQFT /Ft(x) =
∂2m̃(t,M)

∂M2

∣∣∣
M=x

. (34)

This provides a direct relation between the SPD of the gross return FT /Ft and our regression

function m(·).

3.2.2 Time-varying kernel regression

We can now employ the theoretical results in Section 2 on time-varying kernel regression to

estimate the bivariate regression model (31). For this purpose assume that we have a sample of

option prices Cti observed at normalized times 0 <= t1 < ... < tNn(1) <= 1 with strike prices Ki

and futures price level Fi. As before, we assume the trading times have been generated by a point

process model, whose mean intensity is controlled by an unobserved index n. Hence the observed

sample size is Nn(1), where we have normalized Nn(0) = 0. We then propose to estimate the

reduced call pricing function at time t and moneyness level x by

m̂(t, x) =

∑N
i=1Kht(t− ti)KhM (x−Mti)C̃ti∑N
i=1Kht(t− ti)KhM (x−Mti)

, (35)

where Kh(·) = 1/hK(·/h) with K(·) a kernel and ht and hM bandwidths for the time and

moneyness dimension, respectively. This estimator takes a weighted average over call prices,

where the weights depend on the distance in terms of time and moneyness.

This estimator can be generalized to local polynomial smoothing of order p, where ˆ̃m(t, x; p)

6The homogeneity assumption also has been used recently by Chen and Xu (2014), who use intradaily data to
estimate the call pricing function nonparametrically as a function of moneyness and time-to-maturity only.
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is the constant coefficient of a fitted p-th order polynomial around (t, x), where the weight of

observation i is determined by Kht(t− ti)KhM (x−Mti). Although we have not formally derived

the theory for this generalization, the asymptotic normality result in Theorem 1 can be proven

to go through under very similar conditions, except that this requires some more smoothness on

the regression function m, and the bias and variance order terms now depend on higher order

partial derivatives. In particular, we also use the local linear estimator with p = 1, which removes

a first-order bias term and is less vulnerable to boundary effects (Fan and Gijbels, 1996). In our

setting it is given by the minimizer of β0 of the sum of squared residuals of the fitted polynomial

around (t, x)

N∑
i=1

(
C̃ti − β0 − β1(t− ti)− β2(x−Mti)

)2
Kht(t− ti)KhM (x−Mti) (36)

Another advantage of higher order polynomials in our setting is that they give a direct method to

estimate the SPD from higher coefficients in the polynomial. For example, using the local linear

method, the estimator for the moneyness coefficient β̂2 is a direct estimator of the first partial

derivative of m(t, x) w.r.t. moneyness x. Hence using (34), we propose the estimator of the SPD

given by

f̂QFT /Ft(x) =
∂

∂x
β̂2(x). (37)

In practice this estimator can be implemented by estimating β2(x) on a grid of values of x and

taking numerical differences.

Provided the conditions of Theorem 1 are valid, our estimator is asymptotically normal with

bias and variance as given in the theorem. Therefore we now comment on why the local sta-

tionarity and the mixing conditions are indeed sensible for the moneyness covariate. Recall first

that the moneyness covariate is the ratio of two components, the traded strike price and the

futures prices at the time of trade. The range of strike prices that is listed on the exchange is

typically set on a daily basis in reaction to movements in the underlying.7 Hence moneyness will

be recentered around one, which guarantees stationarity from day to day. However, it may still

be nonstationary within a certain day. To see this note for a given strike price K ′ that is listed

on a certain day, we have ∆ logMti = ∆ log
Fti
K′ = log

Fti
Fti−1

. So if intraday log futures returns

are stationary then logMt has a unit root and hence Mt is nonstationary. Yet, also within a

day, we might expect traded strike prices to vary along with the underlying. When this happens

in such a way that the relative amount of trading at different levels of moneyness is (roughly)

constant during the day, Mt will be (locally) stationary. Regarding the mixing condition, the

effective recentering of the moneyness level around one similarly rules out any long-term memory

7Our dataset is from the E-mini S&P 500, which lists strike prices at regular intervals within +-50% of the
closing price of the futures on the previous day. See Group (2014) for details.
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in the futures price level. Hence as long as the strike prices being traded do not posses some

long-memory property, the mixing condition for the moneyness covariate seems sensible. This

would for example be satisfied if the strike prices follow a finite-order Markov chain, regardless

of the trading intensity. The next section describes some empirical properties of Mt to illustrate

how these conditions apply to our setting.

3.3 Empirical results

3.3.1 Data Description

Our dataset consists of the transaction prices and bid and ask quotes of European options on a

futures contract on the E-mini S&P 500 equity index, and the transaction prices and bid and ask

quotes of the futures contract on which these options are written. The bid and ask quotes are

‘best’ quotes, that is, only ask (bid) quotes entering the order book that are lower (higher) than

the previously best quote are recorded. They are traded on the electronic GLOBEX platform

and obtained from the CME Group. The sample period is November 2013. The options are

End-of-Month options, which means they deliver the futures contract at 3:00 PM Chicago Time

on the last trading day of the month, cash-settled with the strike price. Note the futures contract

is the nearest-expiring quarterly E-mini S&P 500 futures after maturity of the option. Hence the

futures contract expires beyond the maturity time of the option. For example, for the November

End-of-Month options the relevant futures contract is the December futures contract. However,

since there exists a simple no-arbitrage relation between the futures prices and the equity index,

see footnote 3, we can restrict attention to the SPD of the futures price at maturity of the option.

This should be the same as the SPD of the equity index up to a known discount factor.

The options and futures on the E-mini S&P 500 are traded around the clock, except a daily

maintenance interval from 4:15-5:00 PM. The time stamps are recorded in seconds. Since several

transactions often take place within the same second, the data are ordered in terms of their trade

sequence number. This numbering is reset at 5:00 PM every day, so that observations after 5:00

PM on a particular day are classified to the next trading day.

The dataset not only contains all transactions of option and futures contracts on each trading

day, but also all updates on the highest bid price and the lowest ask price. Table 1 gives the

number of transactions, bid updates, and ask updates, for futures and options on November 1,

2013.

Table 1: Number of observations for E-mini S&P 500 futures and option prices in November

2013.
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Futures Calls Puts

Transactions 6,922,393 11,329 15,713

Bid Prices 20,883,086 10,947,785 14,223,270

Ask Prices 20,883,071 11,472,708 15,395,095

As seen from the table, the number of updated bid and ask quotes of the futures and option

prices is of the same order, with about twice as many observations for futures. However, whilst

the number of futures transactions is in the order of millions, there are only a few ten thousands

of option transactions. This indicates the huge potential of adding bid and ask prices to the

sample. Other observations are that there are roughly as many bid updates as ask updates, and

that put option are slightly more actively traded than call options.

Fig. 1 shows a scatter plot of moneyness levels of option transactions during November 2013

versus their trading times. These are the realizations of the covariate used to construct our

estimator. The unevenly spaced nature of the transaction times is clearly observed, in particular

from the difference between day and night time (five vertical lines per week), and the weekends

when the markets are closed. Note also that closer to maturity, the traded moneyness levels are

more centered around one.

Figure 2 shows time series plots of traded strike prices (upper panel), futures prices (mid

panel), and their moneyness ratio (lower panel). The futures prices are synchronized with the

option transactions by taking the average of the last recorded best bid and ask quotes. The upper

panel shows an intradaily pattern in trading activity, which is high between the working hours

9:00AM-6:00PM and low during the night hours. In particular, during night hours almost only

strike prices that are close to at-the-money are quoted, whereas during working hours almost the

full range of listed strike prices is quoted upon. The scale of the mid panel shows that there

were no large shocks in the futures price on this day, so that the time series of the moneyness

ratio in the lower panel closely resembles the time series of the strike price. This suggests that

intraday futures price movements are unlikely to induce severe nonstationarity in moneyness

during intradaily time windows.

Figure 3 shows recorded call and put prices as a function of their moneyness level prices,

for both transaction prices and best bid and ask quotes. Under homogeneity, the option pricing

function should not be affected by scaling both the option price and the strike price by the futures

price. The data clearly reflect that, by the absence of arbitrage, call prices should be convexly

decreasing with strike price and put prices should be convexly increasing. By put-call parity

(22), the put prices may be translated into call prices so that one convexly increasing function is

displayed. The upper panel shows the best bid and ask quotes, from which it is clear that most

activity is at strikes that are ‘at-the-money’, i.e. around with moneyness levels around one. For

some intervals of there are remarkably high levels of the best ask prices. This can be explained
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Figure 1: Time series plot of moneyness levels of options transactions during November 2013, for
options expiring November 29, 2013.

by a lack of liquidity during parts of the day. It warns us that bid and ask prices, or even their

averages, can be poor proxies of the actual market price. The lower panel shows transaction

prices, from which it is even more clear that trading activity is centred around at-the-money

strike prices. The transaction prices, however, do not display similar outliers as the bid and ask

quotes do.

3.3.2 Bandwidth choice

To implement the kernel estimators we have to select the bandwidths ht and hx. A possible

method would be to use plug-in bandwidths, which minimize the asymptotic Mean Square Error

(AMSE) which can be computed from Theorem 1. However, the AMSE depends on unknown

quantities, such as the density f(t, x) and the mean intensity ν(t), which would have to be

estimated first. An alternative is to use cross-validation, which is a completely data-driven method

to choose the bandwidth. The bandwidths are then chosen to minimize objective functions of
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Figure 2: Time series plots of traded strike prices (upper panel), synchronized futures prices (mid
panel), and their moneyness ratio (lower panel), for options traded on November 1, 2013.

the form

CV (ht, hx) =

N∑
i=1

(C̃ti − m̂−i(ti,Mti ;ht, hx))2, (38)

where m̂−i is the leave-one-out-estimator which uses all observations except i.

An important feature of transaction data is that the amount of data points can differ heavily

from period to period. In our dataset this holds especially true as E-mini S&P 500 options are

traded overnight, with the trading activity during the night much lower than during the day.

With a globally cross-validated bandwidth ht, this would lead to large differences in the effective

sample size for the local weighing at different time points of interest. To balance this, and more
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generally to take into account that the AMSE-optimal bandwidth varies over time t (as well as

with the state x), we choose our bandwidths via local cross-validation. In particular, we divide

the total time span covered by our data in blocks, and for each block choose the cross-validated

bandwidth using (38) applied to the data in that block. Note that both data in and outside

the block is used to calculate the leave-one-out estimators. For large samples, the choice of the

block size is of minor importance compared to the effect of the bandwidth on the final estimate

(Hall and Schucany (1989)). There is also an important computational advantage of using local

cross-validation, as the ordering of the data in time means that only a subset of the data has to

be used for each block.

3.3.3 Estimation results

We now apply the locally constant estimator (35) as well as the local linear estimator (37) to

our dataset. Fig. 4 show the resulting estimates using all quotes on one particular trading day,

November 7, 2013. This day is chosen as there was a large downturn of the futures prices during

that day. The locally cross-validated bandwidths lead to effective sampling windows varying

between five minutes and half an hour for bid and ask quotes during trading time. The upper

panel shows the estimated call pricing function m̂(t, x) based on the locally constant estimator

(35). These produce smooth surfaces which represent closely the payoff function (FT −K)+ of

the European call options, but show a clear convex pattern which represents the time value of

the options. The lower panels show the estimated state-price densities, the quantities that are of

direct economic relevance as they indicate how valuable a unit payoff is to investors in different

states of the economy (as proxied for by the S&P 500). From the lower panel in Fig. 4 a clear

negative skewness and a fat left tail of the SPDs can be observed. The are obtained by taking

numerical differences of (37) on a grid of values for moneyness. Whereas the call pricing and

is a smooth surface, the surface plots for the SPD are much more wiggly. An explanation for

this is that the differentation aggravates differences, so that, ceteris paribus, a larger sample size

is needed to estimate derivatives with the same amount of smoothness as the original function.

Since the bandwidths have been chosen to optimize the fit of the call pricing function itself,

rather than its derivatives, this has likely led to undersmoothed estimates of the SPD. A plug-in

bandwidth selector might be employed to overcome this.

Regarding time variation, the fact that the cross validated bandwidth do not exceed more

than a hour for quotes data, is evidence itself of the true regression function not being constant

throughout the whole month. Formal testing procedures can point out whether the resulting

changes in the SPD are statistically significant, as well as economically, which might be tested

using improved pricing and hedging performance.
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4 Conclusion

In this paper we proposed a method to estimate the state-price density from high frequency

options data. Emphasis has been on the time-varying nature of the SPD, and the choice of a

time-smoothing bandwidth when trading activity is varying from day to day and within days. For

this purpose asymptotic theory of a time-varying locally constant kernel regressor under random

sampling times is derived.

In the application, we see that locally constant and locally linear estimators are not yet

able to produce smooth estimates of the SPD, which is the second derivative of the call pricing

function. It may therefore be of interest to estimate this second derivative directly using a local

cubic polynomial, as discussed by Fan and Gijbels (1996). The bandwidth can then be chosen

to optimize the precision of the SPD. Furthermore practical plug-in bandwidth estimators may

be implemented, for example using Hawkes-based models for the conditional intensity function.

Another important topics left undiscussed is formal testing of this estimator, for example, to

reject a time-invariant regression function or to test against parametric specifications.

Appendix

Proof of (6). Define for (t, s) ∈ R2

µ(c)
n (t, s) = δ(t− s)λ̄n(t) + µn(t, s), (39)

with δ(·) the Dirac delta function. Then we can write

Var

(
1

n

∫ t+ht

t−ht
Kht(t− u)Nn(du)

)
=

1

n2

∫ t+ht

t−ht

∫ t+ht

t−ht
Kht(t− u)Kht(t− v)µ(c)

n (u, v)dudv

=
1

n

∫ t+ht

t−ht
K2
ht(t− v)

λ̄n(v)

n
dv

+

∫ t+ht

t−ht

∫ t+ht

t−ht
Kht(t− u)Kht(t− v)

µn(u, v)

n2
dudv

=
ν(t)

nht
R(K) + o

(
1

nht

)
+

∫ 1

−1

∫ nht

−nht
K(z)K (z + y/n)

µn(t+ htz, t+ htz + y/n)

n2
dydz

=
R(K)

nht

(
ν(t) +

∫ ∞
−∞

γtτ)dτ

)
+ o

(
1

nht

)
,
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using the dominated convergence theorem in the last step.

Proof of Theorem 1. Firstly, we decompose

m̂h(t, x; 0)−m(t, x) =
ĝV (t, x) + ĝB(t, x)

f̂(t, x)
, (40)

with

f̂(t, x) =
1

n

Nn(1)∑
i=1

Kht(t− ti,n)Khx(x−Xi,n) (41)

ĝV (t, x) =
1

n

Nn(1)∑
i=1

Kht(t− ti,n)Khx(x−Xi,n)εi,n (42)

ĝB(t, x) =
1

n

Nn(1)∑
i=1

Kht(t− ti,n)Khx(x−Xi,n) (m(ti,n, Xi,n)−m(t, x)) (43)

The proof now consists of the following three parts:

(i) f̂(t, x)
p−→ ν(t)f(t, x)

(ii) ĝB(t, x)
p−→ ν(t)f(t, x)B(t, x)

(iii)
√
nhthxĝ

V (t, x)
d−→ ν(t)f(t, x)×N(0, V (t, x)).

It will be useful to represent the sums in (40) as integrals with respect to the counting process

Nn(t). Throughout we use the convention dNn(t) = Nn(t − dt, t). We will be most detailed for

the density estimation part (i), the main arguments for the other parts being similar. For each

of the parts we use the following asymptotic expansion. Note that similar to (??) and (6), it can

be shown that for general r

1

n

∫ t+ht

t−ht
Kht(t− u)(t− u)rNn(du) =

h
r
tµr(K)ν(t) + oP (hrt ) if r even

hr+1
t µr+1(K)ν ′n(t) + oP (hr+1

t ) if r odd.

Hence using a Taylor expansion it follows that for any continuously differentiable function g :

[0, 1]→ R, u 7→ g(u),

1

n

∫ t+ht

t−ht
Kht(t− u)g(u)Nn(du) = g(t)ν(t) +OP

(
1√
nht

)
+ oP (ht). (44)

(i) We can write the denominator term (41) as

f̂(t, x) =
1

n

∫ t+ht

t−ht
Kht(t− u)Khx(x−X{u},n)Nn(du).
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Its expectation is

E(f̂(t, x)) =
1

n

∫ t+ht

t−ht
Kht(t− u)E

(
Khx(x−X{u},n)Nn(du)

)
=

1

n

∫ t+ht

t−ht
Kht(t− u)E

(
Khx(x−X{u},n)

∣∣dNn(u) = 1
)
λ̄n(u)d(u)

Now we approximate each X{u},n by its stationary counterpart X∗{u},n(u) at the time of obser-

vation ti,n = u. For brevity from now on we write X∗{u},n(u) = X∗{u},n, that is, unless mentioned

otherwise we assume the process is approximated around its own observation time.Following Vogt

(2012, Thm. 4.2), let K̄ be a Lipschitz continuous function on [−q, q], q > 1 with K̄(x) = 1 for

x ∈ [−1, 1], and decompose

E(Khx(x−X{u},n)
∣∣Nn(du) = 1) =E

(
K̄hx(x−X{u},n){Khx(x−X{u},n)−Khx(x−X∗{u},n)}

∣∣Nn(du) = 1
)

+ E
(
{K̄hx(x−X{u},n)− K̄hx(x−X{u},n)}Khx(x−X∗{u},n)

∣∣Nn(du) = 1
)

+ E
(
Khx(x−X∗{u},n)

∣∣Nn(du) = 1
)

For the first term, note that

∣∣∣K (x−X{u},n
hx

)
−K

(
x−X∗{u},n

hx

)∣∣∣ ≤ C∣∣∣K (x−X{u},n
hx

)
−K

(
x−X∗{u},n

hx

)∣∣∣r
≤ CL

∣∣∣X{u},n −X∗{u},n
hx

∣∣∣r
≤
∣∣∣U{u},n(u)

nhx

∣∣∣r,
by boundedness and Lipschitz continuity of K, and local stationarity of {X{u},n}. Here C denotes

some constant which may take different values in different places. Hence from the existence of

conditional moments of U{u},n it follows that the first term is OP

(
1

nrhrx

)
. Similarly it follows

that the second term is also OP

(
1

nrhrx

)
, so with a standard approximation for the third term it

follows that

E(Khx(x−X{u},n)
∣∣Nn(du) = 1) = f(u, x) + oP (hx) +OP

(
1

nrhrx

)
. (45)

Using (44) with g(u) = f(u, x) it follows that

E(f̂h(t, x)) = λ̄n(t)f(t, x) + o(ht + hx) +O

(
1

nrhrx

)
.

26



Its variance is given by

Var(f̂h(t, x)) =
1

(nhthx)2
Var

(∫ t+ht

t−ht
K

(
t− u
ht

)
K

(
x−X{u},n

hx

)
dNn(u)

)
=

1

(nhthx)2

∫ t+ht

t−ht
K2

(
t− u
ht

)
Var

(
K

(
x−X{u},n

hx

)
dNn(u)

)
+

1

(nhthx)2

∫∫
t−ht≤u,v≤t+ht,

u6=v

K

(
t− u
ht

)
K

(
t− v
ht

)

× Cov

(
K

(
x−X{u},n

hx

)
dNn(u),K

(
x−X{v},n

hx

)
dNn(v)

)
≡ (V ) + (CV ).

The variance increments can be computed using the following conditioning argument, with the

shorthand Ku,n(x) = K((x−X{u}),n)/hx),

Var (Ku,n(x)dNn(u)) = Var
(
E
(
Ku,n(x)

∣∣dNn(u)
)

dNn(u)
)

+ E
(
Var

(
Ku,n(x)

∣∣dNn(u)
)

(dNn(u))2
)

= Var ((hxf(u, x) + op(hx))dNn(u)) + E (hxR(K)f(u, x)dNn(u)(1 + op(1)))

= λ̄n(u)hxR(K)f(u, x)du+ o (nhxdu) ,

so that

(V ) =
R(K)

nhthx

∫ t+ht

t−ht
K2

(
t− u
ht

)
λ̄n(u)

n
R(K)f(u, x)du+ o

(
1

nhthx

)
=
µ2

2(K)f(t, x)ν(t)

nhthx
+ o

(
1

nhthx

)
.

For the covariance increments we use the law of total covariance to get, for u < v,

Cov {Ku,n(x)dNn(u),Kv,n(x)dNn(v)} = E {Cov (Ku,n(x),Kv,n(x)|Nn(du), Nn(dv))Nn(du)Nn(dv)}

+ Cov {E (Ku,n(x)|Nn(du), Nn(dv))Nn(du),

E (Kv,n(x)|Nn(du), Nn(dv))Nn(dv)}

= (?) + (??).

Here using P(Nn(du) = Nn(dv) = 1) = λ̄n(u)h̄n(u, v)dudv for u < v,

(?) = Cov {Ku,n(x),Kv,n(x)|Nn(du) = Nn(dv) = 1} λ̄n(u)h̄n(u, v)dudv,
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while the nonnegativity of the jumps implies that we can bound

(??) ≤ Ch2
xCov {Nn(du), Nn(dv)} = Ch2

xµn(u, v).

Now note the equality of events {Nn(du) = Nn(dv) = 1} = {tNn(u),n = u, tNn(v),n = v, }. By

definition, we have tNn(u),n ≤ u for every u. Yet note that when n → ∞, the grid becomes

arbitrarily dense and hence tNn(u),n
p−→ u. This can be used to show, by conditioning on tNn(u),n

and tNn(v),v, that for every u, v ∈ (0, 1) and x, y ∈ S

∣∣∣fX{u},n,X{v},n|Nn(du)=Nn(dv)=1(x, y)− fX{u},n,X{v},n(x, y)
∣∣∣→ 0.

This implies that the distribution of the X{u},n and X{v},n, which are the last observed values at

time u and v, resp., is asymptotically independent from the fact that there are jumps at u and

v. In particular, in the limit their covariance is not affected by these jumps.

Now we can exploit the mixing conditions to bound the covariance using Davydov’s lemma,

which gives for δ > 0

∣∣Cov (Ku,n(x),Kv,n(x))
∣∣ ≤ 8α(n(v − u))

δ
2+δE(Ku,n(x)2+δ)

1
2+δE(Kv,n(x)2+δ)

1
2+δ

≤ Cα(n(v − u))
δ

2+δ h
2

2+δ
x . (46)
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Hence

nhthx
∣∣(CV )

∣∣ ≤ 2

nhthx

t+ht∫
t−ht

t+ht∫
v

K

(
t− u
ht

)
K

(
t− v
ht

)
Cov (Ku,n(x),Kv,n(x)) λ̄n(u)h̄n(u, v)dudv

+
Chx
nht

t+ht∫
t−ht

t+ht∫
v

K

(
t− u
ht

)
K

(
t− v
ht

) ∣∣µn(u, v)
∣∣dudv

=
2nht
hx

1∫
−1

1−z∫
0

K (z + y)K (z) Cov (Kz,n(x),Kz+y,n(x))

× λ̄n(t+ htz)

n

h̄n(t+ htz, t+ ht(z + y))

n
dydz

+ Cnhthx

1∫
−1

1−z∫
0

K (z + y)K (z)

∣∣µn(t+ htz, t+ ht(z + y))
∣∣

n2
dydz

=
2

hx

1∫
−1

nht(1−z)∫
0

K

(
z +

w

nht

)
K (z) Cov

(
Kt+htz,n(x),Kt+htz+

w
n
,n(x)

)

× λ̄n(t+ htz)

n

h̄n(t+ htz, t+ htz + w
n )

n
dwdz

+ Chx

1∫
−1

nht(1−z)∫
0

K

(
z +

w

nht

)
K (z)

∣∣µn(t+ htz+, t+ htz + w
n )
∣∣

n2
dwdz

≡ (∗) + (∗∗),

We now bound the separate terms. We split up (*) using a sequence mn such that mn →∞ and

mnhx → 0, and use covariance inequality (46) to bound the covariance between terms far apart.

Combined with boundedness of the kernel this yields

(∗) ≤ Cmnhx + Ch
δ

2+δ
x

1∫
−1

nht(1−z)∫
mn

α(w)1− 2
δ
λ̄n(t+ htz)

n

h̄n(t+ htz, t+ htz + w
n )

n
dwdz

≤ Cmnhx +
Ch

δ
2+δ
x

mγ
n

1∫
−1

nht(1−z)∫
mn

wγα(w)1− 2
δ
λ̄n(t+ htz)

n

h̄n(t+ htz, t+ htz + w
n )

n
dwdz

→ 0,

for example by setting mγ
n = h

δ
2+δ
x , using the dominated convergence theorem and the condition

on the mixing coefficients (12). For the second term we find

(∗∗)
hx
→ C

1∫
−1

K2 (z)

∞∫
0

γt(w)dwdz <∞,
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again using the dominated convergence theorem. Hence it follows (∗∗) = O(hx). Combining

terms, we conclude that (CV ) = o
(

1
nhthx

)
, which means that the covariance terms are of smaller

order than the variance terms. Hence we have Var(f̂(t, x)) → 0, and since the bias vanishes as

well we have proven the first part.

(ii) The leading bias term of the estimator is given by

E(ĝB(t, x)) = E

(
1

n

∫ t+ht

t−ht
Kht(t− u)Khx(x−X{u},n)(m(u,X{u}),n)−m(t, x))dNn(u)

)
.

In terms of the stationary approximation process we can write, similar to (45),

E
(
Khx(x−X{u},n)(m(u,X{u},n)−m(t, x))dNn(u)

)
= E

(
Khx(x−X∗{u},n)(m(u,X∗{u},n)−m(t, x))

∣∣dNn(u) = 1
)
λ̄n(u)du+O

(
1

nrhrx

)
so that using a Taylor approximation of m(u,X∗{u},n) around m(t, x) and (44) we find

E(ĝB(t, x)) = h2
tµ2(K)

(
∂m(t, x)

∂t

∂f(t, x)ν(t)

∂t
+

1

2

∂2m(t, x)

∂t2
f(t, x)ν(t)

)
+ h2

xµ2(K)

(
∂m(t, x)

∂x

∂f(t, x)

∂x
ν(t) +

1

2

∂2m(t, x)

∂x2
f(t, x)ν(t)

)
+ o(h2

t + h2
x) +O

(
1

nrhrx

)
.

Using the Lipschitz condition on m(t, x) it can be shown that Var(ĝB(t, x)) = o
(

1
nhthx

)
, which

ensures that the variance of the bias term is asymptotically negligible.

(iii) For the variance term, we can write

nhthxVar(ĝV (t, x)) =
1

nhthx
Var

(∫ t+ht

t−ht
K

(
t− u
ht

)
K

(
x−X{u},n

hx

)
ε{u},ndNn(u)

)
=

1

nhthx
E

(∫ t+ht

t−ht
K2

(
t− u
ht

)
K2

(
x−X{u},n

hx

)
ε2{u},ndNn(u)

)

+
1

nhthx
E


∫∫

t−ht≤u,v≤t+ht,
u6=v

K

(
t− u
ht

)
K

(
t− v
ht

)
K

(
x−X{u},n

hx

)

×K
(
x−X{v},n

hx

)
ε{u},nε{v},ndNn(u)dNn(v)


= µ2

2(K)f(t, x)σ2(t, x)ν(t) + o(1),
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using arguments similar as for computing Var(f̂h(t, x)), except in addition to bound the covariance

term we use

E
∣∣Ku,n(x)ε{u},n

∣∣2+δ
= E

(
E
(
ε2+δ
{u},n(x)|X{u},n

)
K2+δ
u,n (x)

)
< Chx.

The asymptotic normality follows from applying large-small block arguments to the integral form

of ĝV (t, x). In particular, write

√
nhthxĝ

V (t, x) =
1√
nhthx

∫ nht

−nht
K

(
w

nht

)
K

(
x−X{t+w

n
}

hx

)
ε{t+w

n
}Nn(t+ dw/n),

and divide the integral in kn large blocks ζj,n of length τl, and kn small blocks ηj,n of length τs,

which integrate, respectively, from −nht + (j − 1)(τl + τs) to −nht + (j − 1)(τl + τs) + τl, and

from −nht + (j − 1)(τl + τs) + τl to −nht + j(τl + τs). Hence we have

√
nhthxĝ

V (t, x) =
1√
nhthx

kn∑
j=1

(ζj,n + ηj,n) ,

where

kn =
2nht
τl + τs

.

We set the block sizes such that τl →∞, τs →∞, τs
τl
→ 0, τl√

nhthx
→ 0, and knα(sn)→ 0. Based

on the choice in (Fan and Yao, 2002, Thm. 2.22), it can be shown that

τl =

√
nhthx

log nht
, τs =

(√
nht/hx log nht

) δ
(λ+1)(2+δ)

satisfies these conditions under the bandwidth conditions in the theorem and the mixing condi-

tion. Note

Var

 1√
nhthx

kn∑
j=1

ηj,n

 <
Cknτs
nht

→ 0,

so that the small blocks are asymptotically negligible. Since by the Volkonskii-Rozanov lemma∣∣∣∣∣∣E
(

exp

(
it

∑kn
j=1 ζj,n√
nhthx

))
−

kn∏
j=1

E

(
exp

(
it

ζj,n√
nhthx

))∣∣∣∣∣∣ ≤ 16(kn − 1)α(τs)→ 0,

the large blocks are asymptotically independent. It can be verified that

1

nhthx

kn∑
j=1

Var (ζj,n)→ µ2
2(K)f(t, x)σ2(t, x)ν(t) > 0,
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by decomposing

Var
(√

nhthxĝ
V (t, x)

)
=

1

nhthx

kn∑
j=1

Var(ζj,n + ηj,n) +
1

nhthx

kn∑
j=1

∑
k 6=j

Cov(ζj,n + ηj,n, ζk,n + ηk,n),

and showing that all other terms on the right hand side vanish, in particular using that for

adjacent blocks
1

nhthx
Cov(ζj,n, ηj,n) < C

τs
nht

.

The Lindeberg condition

1

nhthx

kn∑
j=1

E
(
ζ2
j,n1{|ζj,n|>

√
nhthxε}

)
→ 0,

is satisfied for any ε > 0, since τl = o(
√
nhthx) causes {|ζj,n| >

√
nhthxε} to become an empty

set for large n. The Lindeberg-Feller central limit theorem now gives the required result.

Proof of (16).

λ̄n(t) = Eλn(t) = nφπ(t) +

∫ t

−∞
E
(
h(X{u},n)|Nn(du) = 1

)
ng(n(t− u))λ̄n(u)du,

= nφπ(t) +

∫ ∞
0

E
{
h
(
X{t−wn },n|Nn(t+ dw/n) = 1

)}
g(w)λ̄n(t− w/n)dw + o(n),

where we approximate with the stationary process around time t (all expectations are given

Nn(t+ dw/n) = 1)

E
∣∣∣h(X{t−wn },n)− h(X∗{t−wn },n(t)

)∣∣∣ ≤ LE ∣∣∣X{t−wn },n −X∗{t−wn },n(t)
∣∣∣

≤ CE
∣∣∣X{t−wn },n −X∗{t−wn },n(t)

∣∣∣r
≤ C

(
1 + w

n

)ρ
E
∣∣∣U(t−wn ),n(t)

∣∣∣r
≤ C

(
1 + w

n

)r
,

where the second inequality uses the compactness of S, and we recall r = min(ρ, 1). Hence

ν(t) = lim
n→∞

λ̄n(t)

n
= φπ(t) + ν(t)

∫
S
h(x)f(t, x)dx

∫ ∞
0

g(w)dw,

using the stationarity of X∗{t},n and the integrability conditions on g(·).
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Figure 3: Call and put prices per unit of futures price as a function of moneyness, in terms of best
bid and ask quotes (upper panel) and transaction prices (lower panel), for November 1, 2013.
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Figure 4: Time-varying kernel smoother of call price function (upper panel), and SPD (lower),
using bid and ask quotes on November 7, 2013 of options expiring November 29, 2013. Bandwidths
are chosen by local cross-validation with one-hour blocks between 9AM and 6PM.
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