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Abstract

Financial market participants and policymakers closely monitor the evolution of interest

rate expectations. At any given time, the term structure of interest rates contains infor-

mation regarding these expectations. No-arbitrage dynamic term structure models have

regularly been used to estimate interest rate expectations, but daily frequency estimates of

these models fail to accurately capture the evolution of interest rate expectations implied

by surveys and financial market instruments. I propose the augmentation of no-arbitrage

Gaussian affine dynamic term structure models with overnight indexed swap (OIS) rates

in order to better estimate the evolution of interest rate expectations across the whole

term structure. Drawing on Lloyd (2016a), I provide evidence that the OIS rates that I

augment the model with have statistically insignificant excess returns and so provide valid

information with which to identify interest rate expectations. The OIS-augmented model

that I propose, estimated between January 2002 and December 2015 for the US, gener-

ates estimates of the expected path of short-term interest rates that closely correspond to

those implied by federal funds futures rates and survey expectations, and accurately depict

their daily frequency evolution. Against these metrics, the interest rate expectation esti-

mates from OIS-augmented models are superior to estimates from existing Gaussian affine

dynamic term structure models.
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1 Introduction

Financial market participants, researchers and policymakers closely monitor the daily frequency

evolution of interest rate expectations. To achieve this, they consider a wide range of different

financial market instruments and prices. For researchers and policymakers, it is important to

attain an accurate measure of the evolution of these expectations in order to form judgements

about the appropriateness of real-time policy decisions and to evaluate the effectiveness of

existing policies.1 For investors, understanding future interest rate expectations is important

for discounting cash flows, valuing investment opportunities and engaging in profitable trade.

At any given time, the term structure of interest rates contains information regarding these

expectations. For this reason, dynamic term structure models have increasingly been used to

estimate and separately identify the dynamic evolution of (i) the expected path of future short-

term interest rates and (ii) term premia,2 two components of nominal government bond yields.

By imposing no-arbitrage, these models provide estimates of the evolution of interest rate expec-

tations that are consistent across the term structure. However, a popular class of these models

— Gaussian affine dynamic term structure models (GADTSMs) — suffer from an identification

problem that results in estimates of interest rate expectations that are spuriously stable (see,

for example, Bauer, Rudebusch, and Wu, 2012; Kim and Orphanides, 2012; Guimarães, 2014).

Central to the identification problem is an informational insufficiency. Unaugmented GADT-

SMs use bond yield data as their sole input. These yields provide information of direct relevance

to the estimation of the fitted bond yields. Absent additional information, estimates of interest

rate expectations are poorly identified as they must also be derived from information contained

within the actual bond yields. To do this, maximum likelihood or ordinary least squares esti-

mates of, inter alia, the persistence of the (pricing factors derived from the) actual yields must

be attained. However, as a symptom of the identification problem, a ‘finite sample’ bias will

arise in these persistence parameters when there is insufficient information and a limited number

of interest rate cycles in the observed yield data.3 Finite sample bias will result in persistence

parameters that are spuriously estimated to be less persistent than they really are and estimates

of future short-term interest rates that are spuriously stable.4 Because bond yields are highly

persistent, the finite sample bias can be severe. Moreover, the severity of the bias is increasing

in the persistence of the actual yield data. For daily frequency yields, which display greater

persistence than lower-frequency data, the problem is particularly pertinent.

1See, for example, the broad literature evaluating the impact and transmission channels of various unconven-
tional monetary policies enacted by central banks since 2007/8, which uses daily frequency changes in interest
rate components to decompose the relative importance of the various channels (for more details, see: Lloyd,
2016b).

2The term premium represents the compensation investors receive for, inter alia, default risk, interest rate
risk and illiquidity.

3Kim and Orphanides (2012, p. 242) state that “in a term structure sample spanning 5 to 15 years, one may
not observe a sufficient number of ‘mean reversions’.”

4This ‘finite sample’ bias is well documented for ordinary least squares estimation of a univariate autoregressive
process, where estimates of the autoregressive parameter will be biased downwards, implying less persistence
than the true process (Stock and Watson, 2011). Within GADTSMs, the finite sample bias is a multivariate
generalisation of this.
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In this paper, I propose the augmentation of GADTSMs with overnight indexed swap (OIS)

rates as an additional input to estimation to improve the identification of interest rate expecta-

tions from term premia in GADTSMs. OIS contracts are over-the-counter traded interest rate

derivatives in which two counterparties exchange fixed and floating interest rate payments over

its term. A counterparty will enter into an OIS agreement if they expect the payments they

swap to exceed those they take on. Thus, OIS rates should reflect the average of investors’

expectations of future short-term interest rates. I show that, by providing information for

the separate identification of interest rate expectations, OIS-augmentation of GADTSMs does

tackle the informational insufficiency at the center of the GADTSM identification problem.

Before estimating the OIS-augmented model for the US, I first verify that OIS rates do indeed

provide accurate information about investors’ expectations of the future short-term interest rate.

Drawing on work by Lloyd (2016a), I verify that, between January 2002 and December 2015,

the mean ex post realised excess return on 3-24-month OIS rates were insignificantly different

from zero.5

I then present the OIS-augmented GADTSM, deriving expressions for the OIS pricing factor

loadings that explicitly account for the geometric payoff structure in OIS contracts. I estimate

the OIS-augmented model using maximum likelihood via the Kalman filter. To the extent that

excess returns on OIS rates can vary on a day-to-day basis, I admit measurement error in the

OIS excess returns over time in my OIS-augmented GADTSM. The Kalman filter maximum

likelihood setup I use is well suited to account for this.

This is not the first paper to propose a solution to the identification problem in GADTSMs.

Kim and Orphanides (2012) suggest the augmentation of GADTSMs with survey expectations

of future short-term interest rates for the same purpose. Kim and Orphanides (2012) document

that, between 1990 and 2003, the survey-augmented model does produce sensible estimates of

interest rate expectations. Guimarães (2014) shows that, relative to an unaugmented GADTSM,

the survey-augmented model provides estimates of interest rate expectations that both better

correspond with survey expectations of future interest rates and deliver gains in the precision of

interest rate expectation estimates. However, I show that estimated interest rate expectations

from the OIS-augmented model are superior to the survey-augmented model for the 2002-15

period.

Bauer et al. (2012) propose an alternative solution, focused on resolving the finite sample

bias problem: formal bias-correction of GADTSMs. They document that their bias-corrected

estimates of interest rate expectations “are more plausible from a macro-finance perspective”

(Bauer et al., 2012, p. 454) than those from an unaugmented GADTSM. However, as Wright

(2014) states: the fact that bias-correction has notable effects on GADTSM-estimated interest

rate expectations is merely a symptom of the identification problem. Bias-correction does not

directly address the identification problem at the heart of GADTSM estimation: the informa-

5Formally, the 2-year OIS rate exhibits ex post excess returns that are statistically significant at the 10% level.
However, further study of this in Lloyd (2016a) indicates that this marginally significant result is driven by the
ex ante unexpected nature of the 2007/8 financial crisis and associated loosening of monetary policy, as opposed
to risk premia within the 2-year contract. At all other maturities that I test, from 3 to 21 months, OIS rates
exhibit statistically insignificant average ex post excess returns for the whole 2002-15 sample.
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tional insufficiency. Moreover, Wright (2014) argues that the bias-corrected estimates of future

interest rate expectations are “far too volatile” (Wright, 2014, p. 339). I find that estimated in-

terest rate expectations from the OIS-augmented model are superior to bias-corrected estimates

for the 2002-15 period.

The OIS-augmentation that I present is closest in philosophy to the former of these propos-

als: survey-augmentation. The GADTSM is augmented with additional information to better

identify the evolution of interest rate expectations. However, OIS-augmentation differs in a

number of important respects, which help to explain its superior performance vis-à-vis survey-

augmentation. Primarily, although survey forecasts do help to address the informational insuffi-

ciency problem, they are ill-equipped for the estimation of daily frequency expectations. Survey

forecasts of future interest rates are only available at a low frequency: quarterly or monthly, at

best. Thus, survey forecasts are unlikely to provide sufficient information to accurately iden-

tify the daily frequency evolution of interest rate expectations. Moreover, the survey forecasts

used by Kim and Orphanides (2012) and Guimarães (2014) correspond to the expectations of

professional forecasters and not necessarily those of financial market participants.

OIS rates offer significant advantages over survey expectations for the daily frequency esti-

mation of GADTSMs. Most importantly, OIS rates are available at a daily frequency, so provide

information at the same frequency at which interest rate expectations are estimated. Secondly,

OIS rates are formed as a result of actions by financial market participants, so can be expected

to better reflect their expectations of future short-term interest rates. Third, the information

in survey forecasts is limited in comparison to the expectational information contained in OIS

rates. Survey forecasts typically provide information about expected future short-term interest

rates for a short time period in the future.6 In contrast, there exists a term structure of OIS

contracts that can be used to infer the evolution of investors’ interest rate expectations from

now until a specified future date. The horizon of these OIS contracts corresponds exactly to

the horizon of nominal government bonds.

Away from the GADTSM-literature, OIS rates are increasingly being used by academics

to infer investors’ expectations of future monetary policy absent a model structure (see, no-

tably: Christensen and Rudebusch, 2012; Woodford, 2012; Bauer and Rudebusch, 2014; Lloyd,

2016b). These authors consider daily changes in OIS rates, attributing them to changes in

investors’ expectations of future short-term interest rates. Lloyd (2016a) formally studies the

empirical performance of OIS rates as financial market-based measures of investors’ interest

rate expectations. He first compares the ex post excess returns on US OIS contracts with

comparable-maturity federal funds futures contracts, widely used market-based measures of

monetary policy expectations. Gürkaynak, Sack, and Swanson (2007b) document that fed-

eral funds futures dominate a range of other financial market instruments in forecasting the

future path of short-term interest rates at horizons out to six months.7 Lloyd (2016a) finds

6For example, the Survey of Professional Forecasters at the Federal Reserve Bank of Philadelphia provide
expectations of the average 3-month T-Bill rate during the current quarter, and the first, second, third and
fourth quarters ahead.

7Gürkaynak et al. (2007b) compare the predictive power of federal funds futures to term federal funds loans,
term eurodollar deposits, eurodollar futures, Treasury bills and commercial paper of comparable maturities.
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that 3-11-month US OIS rates provide measures of monetary policy expectations as good as

comparable-maturity federal funds futures rates for the 2002-15 period.8 Lloyd (2016a) also

assesses the empirical performance of OIS rates in the US, at longer maturities, and the UK,

Japan and the Eurozone. Lloyd (2016a) concludes that UK, Japanese and, to a lesser extent,

Eurozone OIS rates provide similarly good measures of interest rate expectations, implying that

the method proposed in this paper is widely applicable in other countries.

OIS rates offer a further advantage over federal funds futures as a measure of interest rate

expectations in a GADTSM-setting. The horizon of OIS contracts corresponds exactly to the

horizon of the zero-coupon nominal government bond yield data used in GADTSMs. The

horizon of a federal funds futures contract is a single month in the future, beginning on the

first and ending on the last day of a specified month. Thus, OIS contracts provide a richer

source of information with which to identify expected future short-term interest rates in the

term structure of nominal government bond yields.

I document that the OIS-augmented model accurately captures investors’ expectations of

future short-term interest rates. The in-sample model estimates of interest rate expectations co-

move closely with federal funds futures rates and survey expectations of future short-term inter-

est rates. In these dimensions, the OIS-augmented model is superior to three other GADTSMs:

(i) the unaugmented model, which only uses bond yield data to estimate both actual yields

and interest rate expectations; (ii) the bias-corrected model of Bauer et al. (2012); and (iii)

the survey-augmented model.9 The OIS-augmented model is also best able to capture qual-

itative daily frequency movements in interest rate expectations implied by financial market

instruments. Moreover, unlike the other models, the interest rate expectations implied by the

OIS-augmented model obey the zero lower bound, despite the fact additional restrictions are

not imposed to achieve this. This represents an important computational contribution in the

light of recent computationally burdensome proposals for term structure modelling at the zero

lower bound (see, for example Christensen and Rudebusch, 2013a,b).

The remainder of this paper is structured as follows. Section 2 describes the features of an

OIS contract, defines its ex post realised excess return and illustrates the statistical insignificance

of average ex post excess returns at a range of horizons. Section 3 lays out the unaugmented

arbitrage-free GADTSM before describing the identification problem and ‘finite sample’ bias

with direct reference to the model parameters. In section 4, I present the OIS-augmented

model, which directly accounts for the payment structure of OIS contracts. In section 5, I

document the data used and the estimation methodology. Section 6 presents the results of term

structure estimation, documenting the superiority of the OIS-augmented model as a measure

of interest rate expectations. Section 7 concludes.

8At very short-term horizons — 1-2 months — federal funds futures rates accurately reflect interest rate
expectations (Hamilton, 2009).

9For the most direct comparison to the OIS-augmented model I propose in this paper, I estimate the survey-
augmented model using the algorithm of Guimarães (2014) which uses the same Joslin et al. (2011) identification
restrictions as my OIS-augmented model, as opposed to the Kim and Wright (2005) survey-augmented model
that directly applies the Kim and Orphanides (2012) identification algorithm. Lloyd (2016b) shows that the Kim
and Wright (2005) model performs worse than the OIS-augmented decomposition.
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2 Overnight Indexed Swaps

An overnight index swap (OIS) is an over-the-counter traded interest rate derivative with two

participating agents who agree to exchange fixed and floating interest rate payments over a

notional principal for the life of the contract. The floating leg of the contract is constructed by

calculating the accrued interest payments from a strategy of investing the notional principal in

the overnight reference rate and repeating this on an overnight basis, investing principal plus

interest each time. The reference rate for US OIS contracts is the effective federal funds rate.

The ‘OIS rate’ represents the fixed leg of the contract. For vanilla US OIS contracts with a

maturity of one year or less, money is only exchanged at the conclusion of the OIS contract.

Upon settlement, only the net cash flow is exchanged between the parties.10 That is, if the

accrued fixed interest rate payment exceeds the floating interest payment, the agent who took

on the former payments must pay the other at settlement. Importantly, there is no exchange of

principal at any time for OIS contracts of all maturities.

Given its features, changes in OIS rates can reasonably be associated with changes in in-

vestors’ expectations of future overnight interest rates over the horizon of the contract (Michaud

and Upper, 2008). OIS contracts should contain only very small excess returns. Notably, be-

cause OIS contracts do not involve any initial cash flow, their liquidity premia will be small.

Additionally, because OIS contracts do not involve an exchange of principal, their associated

counterparty risk is small. Because many OIS trades are collateralised, credit risk is also min-

imised (Tabb and Grundfest, 2013, pp. 244-245). Unlike many LIBOR-based instruments, OIS

contracts have increased in popularity amongst investors following the 2007/8 financial crisis

(Cheng, Dorji, and Lantz, 2010).

2.1 Excess Returns on Overnight Indexed Swaps

To assess the magnitude of the excess returns within OIS rates, I present a mathematical

expression for this quantity. Let iOISt,t+n denote the annualised n-month OIS rate, the fixed

interest rate in the swap, quoted in month t. Let iFLTt,t+n denote the annualised ex post realised

value of the floating leg of the same swap contract. From the perspective of an agent who swaps

fixed interest rate payments for the floating rate over the notional principal x, the net cash flow

received is
(
iOISt,t+n − iFLTt,t+n

)
× x.

The floating leg of the contract iFLTt,t+n is calculated by considering a strategy in which an

investor borrows the swap’s notional principal x, invests in the overnight reference rate and

repeats the transaction on an overnight basis, investing principal plus interest each time. Let

the contract trade day be denoted t1−s, where s denotes the ‘spot lag’ of the contract in days.

US OIS contracts have a two day spot lag s = 2, so the trade date is denoted t−1.
11 Suppose that

the n-month contract matures on the day tN in the calendar month t+n. Then, the floating leg

10For vanilla OIS contracts with maturity in excess of one year, the exchange of net cash flows occurs at the
end of every year (OpenGamma, 2013).

11That is, calculation of the payments to be made under the floating and fixed legs of the swap does not
commence until two days after the contract was agreed.
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is calculated based on the realised effective federal funds rate — the floating overnight reference

rate for US OIS contracts — on days t1, t2, to tN , where the effective federal funds rate on

the day ti is denoted: ffri. Following market convention, the mathematical expression for the

floating leg of an n-month OIS contract, purchased on day t−1 in month t is:12

iFLTt,t+n =

([
N∏
i=1

(1 + γiffri)

]
− 1

)
× 360

N
(1)

where γi is the accrual factor of the form γi = Di/360, where Di is the day count between the

business days ti and ti+1.
13 To compare this floating leg to the fixed leg iOISt,t+n, which is reported

on an annualised basis, iFLTt,t+n is a multiple of 360/N in equation (1).14

From the perspective of the agent who swaps fixed for floating interest rate payments,(
iOISt,t+n − iFLTt,t+n

)
× x represents the payoff of a zero-cost portfolio.15 Thus, in accordance with

the terminology of Piazzesi and Swanson (2008), the ‘ex post realised excess return’ on the

n-month OIS contract purchased in month t is:

rxoist,t+n = iOISt,t+n − iFLTt,t+n (2)

Throughout this section, I report ex post excess returns in basis points (i.e., 100× rxoist,t+n).

Under the expectations hypothesis, the fixed leg of the OIS contract must equal the ex ante

expectation of the floating leg:

iOISt,t+n = Et
[
iFLTt,t+n

]
(3)

Thus, if the ex post realised excess return in equation (2) has zero mean, the ex ante forecasting

error under the expectations hypothesis also has zero mean, supporting the proposition that the

n-month OIS rate provides an accurate measure of investors’ expectations of future short-term

interest rates. In constructing the OIS-augmented GADTSM, I assume that the included OIS

tenors satisfy the relationship in equation (3), motivating the subsequent estimation of ex post

realised excess returns on OIS contracts of various maturities to test this assumption.

2.2 Estimated Average Excess Returns on OIS Contracts

The results presented in this sub-section are from Lloyd (2016a). To attain these results, I

calculate the ex post realised floating leg of the n-month OIS contract using equation (1),

accounting for the two-day spot lag, and the ex post realised excess return using equation (2)

12See both Cheng et al. (2010) and OpenGamma (2013).
13For example, on a week with no public holidays, the day count Di will be set to 1 on Monday to Thursday,

3 on Friday, and 0 on Saturday and Sunday. The day count is divided by 360, and not 365, in accordance with
the quoting convention of the US market, which uses a 30-day month and 360-day year. For additional details,
see OpenGamma (2013).

14This, again, is in accordance with the US market quoting conventions. The fixed and floating legs of US OIS
contracts are quoted according to the Actual 360 market convention (OpenGamma, 2013, page 6).

15Formally, this portfolio involves borrowing x at the floating overnight index rate at day t1 and rolling-over
the borrowing to day tN (resulting in the total floating rate payment iFLTt,t+n), while investing the x borrowed on
day t1 in the fixed interest rate iOISt,t+n for N -days.
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Table 1: Average Ex Post Excess Returns on US OIS Contracts at Daily Frequency

Maturity in Months 1 2 3 4 5 6

α̂(n) −3.31*** 0.29 2.46 4.39 6.25 8.12
[t-statistic] [−2.98] [0.18] [1.07] [1.37] [1.42] [1.38]

Maturity in Months 7 8 9 10 11 12

α̂(n) 9.64 11.41 14.13 15.33 17.45 21.33
[t-statistic] [1.25] [1.19] [1.26] [1.14] [1.13] [1.25]

Maturity in Months 15 18 21 24 36

α̂(n) 28.16 36.36 45.38 54.97* 91.43***
[t-statistic] [1.27] [1.37] [1.54] [1.82] [5.70]

Note: Results from regression (4) for US OIS contracts. Sample: January 2002 to December 2015, Daily
Frequency. Robust Hansen and Hodrick (1980) t-statistics are reported in square brackets. An excess return
is significantly different from zero at a 1%, 5% and 10% significance level when the absolute value of the
t-statistic exceeds 2.33, 1.96 and 1.645 respectively. These are denoted with asterisks ***, ** and * for the
1%, 5% and 10% significance levels respectively. All figures are reported in basis points to two decimal places.

at a daily frequency. I then run the following regression:

rxoist,t+n = α(n) + εt,t+n (4)

for the following maturities: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11 months; 1 year; 15, 18, 21 months; 2 and

3 years.

The results of this are presented in table 1. All regressions are reported using the January

2002 to December 2015 sample period,16 the baseline period for all estimations in this paper.

Because contract horizons at adjacent time periods overlap, I compute robust Hansen and

Hodrick (1980) standard errors to account for the serial correlation this induces. I report t-

statistics based on these standard errors.

Average ex post excess returns on 3-21-month OIS contracts are all insignificantly positive,

ranging from 2.46 to 45.38 basis points. The average excess return on OIS contracts is broadly

increasing in the maturity of the contract, consistent with the view that OIS rates will contain

some, albeit statistically insignificant, term premia.

The average ex post excess returns on the 2-year OIS contract is 54.97 basis points, significant

at the 10% significance level. At first sight, this finding undermines the claim the 2-year OIS

contract provides accurate measures of investors’ interest rate expectations. However, Lloyd

(2016a) demonstrates that this result reflects the ex ante unexpected nature of the 2007/8

financial crisis and associated loosening of monetary policy, rather than risk premia within the

contract. Lloyd (2016a) finds that by adding an additional ‘2008 dummy’, set equal to one

on dates where the OIS contract matures between January 22, 2008 to December 16, 2008 to

account for the unexpected nature of US monetary policy loosening in 2008,17 the average ex

16January 2002 is the first month in which daily OIS rate data at these maturities is regularly available on
Bloomberg. See Lloyd (2016a, Appendix A) for a detailed description of OIS rate availability.

17January 22, 2008 confers to first US policy rate cut in 2008. On December 16, 2008, the federal funds rate
target fell to 0-0.25 basis points.
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post excess return on the 2-year OIS contract is 19.98 basis points and insignificantly different

from zero.

The 1-month and 3-year OIS contracts both have statistically significant average excess

returns. The average excess return on the 1-month OIS contract is −3.31 basis points and

the 3-year contract has a positive average excess return of 91.43 basis points. Lloyd (2016a)

conducts sensitivity analysis to investigate these results and concludes that: (i) the significantly

negative average ex post excess return on the 1-month contract, most likely, reflects a lack of

liquidity at this tenor, between 2002 and 2007 especially;18 and (ii) the significantly positive

average ex post excess return on the 3-year contract reflects risk premia in longer-horizon OIS

contracts that blur their use as market-based measures of monetary policy expectations.19

Overall, the results in Lloyd (2016a) support the conclusion that, on average, 3-24-month

OIS rates provide accurate measures of investors’ interest rate expectations. Specifically, the

results indicate that OIS contracts of these tenors conform to the expectations hypothesis, as

stated in equation (3), containing statistically insignificant ex ante forecasting errors under the

hypothesis. This verifies an important identifying assumption for the OIS-augmented GADTSM

presented in section 4 below.

2.3 OIS Rates and Survey Expectations

To add further illustrative evidence to the proposition that OIS rates provide accurate infor-

mation about investors’ expectations of the future short-term interest rate path, I consider

the relationship between OIS and another measure of investors’ expectations, namely survey

expectations.

In figure 1, I plot the daily 3, 6 and 12-month OIS rates between January 2002 and De-

cember 2014 against both the daily frequency ex post realised floating leg of the swap and the

quarterly frequency survey expectations of the future short-term nominal interest rate over the

corresponding horizon. I construct approximations of survey forecasts for the average 3-month

T-bill rate for each of the horizons using data from the Survey of Professional Forecasters at the

Federal Reserve Bank of Philadelphia.20 The survey is published every quarter and reports the

mean forecasters’ expectations of the average 3-month T-Bill rate over a specified time period

in: the current quarter i
3m,sur
t|t ; and the first i

3m,sur
t+1|t , second i

3m,sur
t+2|t , third i

3m,sur
t+3|t and fourth

i
3m,sur
t+4|t quarters subsequent to the current one, where t here denotes the current quarter. To

construct the survey forecast approximations plotted in figure 1, I first calculate the implied

expectations of the average 3-month T-Bill rate over the remainder of the current quarter using

both the realised 3-month T-Bill rate over the current quarter and the survey expectation for the

18Although there is no direct evidence for this claim, anecdotal evidence is not unsupportive. Fleming et al.
(2012, p. 14, table 7) find that the 3, 6 and 12-month tenors were the most liquid and commonly traded US OIS
contracts during 2010.

19From this sensitivity analysis, Lloyd (2016a) also concludes that the 2-month OIS rate contains negative
statistically significant ex post excess returns for the 2002-15 period, excluding 2008. As with the 1-month rate,
Lloyd (2016a) concludes that this finding, most likely, reflects a lack of liquidity at this tenor between 2002 and
2007 especially.

20See Appendix A for a detailed specification of data sources. Guimarães (2014) uses survey forecasts from the
Survey of Professional Forecasters in his estimation of the US term structure of interest rates.
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Figure 1: Survey Expectations, OIS Rates and their Ex Post Realised Floating Leg
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The daily OIS rates are from Bloomberg. See appendix A for detailed data source information. The daily ex
post realised floating legs of the swaps are calculated in the manner described in section 2.1 and, specifically, in
equation (1). The survey expectations are from the Survey of Professional Forecasters. The survey forecast, at
each horizon, is attained by constructing the geometric weighted average of the mean response of forecasters

relating to their expectation of the average 3-month T-Bill rate over the different relevant periods, in the manner
described in section 2.3. The survey expectations are plotted on the forecast submission deadline date for each

quarter. The vertical lines in each panel are plotted at the beginning of the time period 3, 6 and 12 months
prior to November 2007 respectively, the official start date of the US recession according to the NBER dating.

average 3-month T-Bill rate for the current quarter. Using this and the longer-horizon survey

expectations, I then calculate geometric weighted averages of survey forecasts from the Survey

of Professional Forecasters. I use a geometric weighting scheme to replicate the geometric payoff

structure embedded within OIS contracts, allowing comparison of the survey and OIS-implied

expectations.

Although the Survey of Professional Forecasters data is available once a quarter, the deadline

date for submission of the forecasts lies approximately halfway through the quarter.21 In figure

1, I assume that the reported 3-month T-Bill expectations reflect forecasters’ expectations on

the deadline day, so plot these expectations on this date, rather than the end of the quarter.

The weighting scheme used for the approximations in figure 1 is made possible because the

21For example, the deadline date for the 2013 Q1 survey was February 11th 2013.
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survey deadline date lies approximately halfway through the ‘current’ quarter. Further details

of the survey forecast approximation, including specific mathematical expressions, are presented

in appendix B. The plots, in figure 1, demonstrate that survey and OIS-implied interest rate

expectations have closely qualitatively and quantitatively co-moved between 2002 and 2015.

In figure 1, the difference between the OIS rate (solid black line) and the ex post realised

floating leg (dashed red line) graphically depicts the excess return defined in equation (2). Visual

inspection of figure 1 confirms the formal results from section 2.2: the OIS rate closely co-moves

with the ex post realised path of the floating leg of the contract. The most notable deviation

of the two quantities occurs in 2007-8, consistent with the financial turmoil that erupted in

this period.22 As many of the events during 2007-8 — Federal Reserve policy easing most

importantly — were unanticipated, there is no reason to expect them to be reflected in ex ante

expectations of future interest rates, explaining the difference in the quantities at this time.

3 Term Structure Model

In this section, I present the discrete-time GADTSM that is commonplace in the literature (see,

for example Ang and Piazzesi, 2003; Kim and Wright, 2005). I then describe the identification

problem, which arises from the estimation of unaugmented GADTSMs, with direct reference

to the model’s parameters. Since the focus of this paper is on the identification of short-term

interest rate expectations at a daily frequency, hereafter I refer to t as a daily time index.23

3.1 Unaugmented Model Specification

The discrete-time GADTSM builds on three key foundations. First, there are K pricing factors

xt (a K × 1 vector), which follow a first-order vector autoregressive process under the actual

probability measure P:

xt+1 = µ+ Φxt + Σεt+1 (5)

where εt+1 is a stochastic disturbance with the conditional distribution εt+1|xt ∼ N (0K , IK);

0K is a K × 1 vector of zeros; and IK is a K ×K identity matrix. µ is a K × 1 vector and Φ

is a K ×K matrix of parameters. Σ is a K ×K lower triangular matrix, which is invariant to

the probability measure.

Second, the one-period short-term nominal interest rate it is assumed to be an affine function

of all the pricing factors:

it = δ0 + δ′1xt (6)

where δ0 is a scalar and δ1 is a K × 1 vector of parameters.

Third, no-arbitrage is imposed. Following Duffee (2002), the pricing kernel Mt+1 that prices

22The vertical lines in figure 1 denote the time period 3, 6 and 12 months prior to the official start of the US
recession in November 2007, according to the NBER dating.

23However, the model can be estimated at lower frequencies (e.g. monthly), with the label for t changing
correspondingly (e.g. a month). The results from monthly estimation are qualitatively similar to those from
daily estimation, so are presented in appendix F.3.

11



all assets when there is no-arbitrage is of the following form:

Mt+1 = exp

(
−it −

1

2
λ′tλt − λ′tεt+1

)
(7)

where λt represents a K× 1 vector of time-varying market prices of risk, which are affine in the

pricing factors:

λt = λ0 + Λ1xt (8)

where λ0 is a K × 1 vector and Λ1 is a K ×K matrix of parameters.

The assumption of no-arbitrage guarantees the existence of a risk-adjusted probability mea-

sure Q, under which the bonds are priced (Harrison and Kreps, 1979).24 Given the choice

of market prices of risk in equation (8), the pricing factors xt also follow a first-order vector

autoregressive process under the Q probability measure:

xt+1 = µQ + ΦQxt + ΣεQt+1 (9)

where:25

µQ = µ−Σλ0, ΦQ = Φ−ΣΛ1.

and εQt+1 is a stochastic disturbance with the conditional distribution εQt+1|xt ∼ N (0K , IK).

Bond Pricing Since Mt+1 is the nominal pricing kernel, which prices all nominal assets in

the economy, the gross one-period return Rt+1 on any nominal asset must satisfy:

Et [Mt+1Rt+1] = 1 (10)

Let Pt,n denote the price of an n-day zero-coupon bond at time t. Then, using Rt+1 =

Pt+1,n−1/Pt,n, equation (10) implies that the bond price is recursively defined:

Pt,n = Et [Mt+1Pt+1,n−1] (11)

Alternatively, with no-arbitrage, the price of an n-period zero-coupon bond must also satisfy

the following relation under the risk-adjusted probability measure Q:

Pt,n = EQ
t [exp(−it)Pt+1,n−1] (12)

By combining the dynamics of the pricing factors (equation (9)) and the short-term interest

rate (equation (6)) with equation (12), the bond prices can be shown to be an exponentially

24The risk-adjusted probability measure Q is defined such that the price Vt of any asset that does not pay
any dividends at time t + 1 satisfies Vt = EQ

t [exp(−it)Vt+1], where the expectation EQ
t is taken under the Q

probability measure.
25See appendix C.2 for a formal derivation of these expressions.
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affine function of the pricing factors:

Pt,n = exp (An + Bnxt) (13)

where the scalar An ≡ An
(
δ0, δ1,µ

Q,ΦQ,Σ;An−1,Bn−1
)

and Bn ≡ Bn
(
δ1,Φ

Q;Bn−1
)
, a 1×K

vector, are recursively defined loadings:

An = −δ0 +An−1 +
1

2
Bn−1ΣΣ′B′n−1 + Bn−1µQ

Bn = −δ′1 + Bn−1ΦQ

with initial values A0 = 0 and B0 = 0′K ensuring that the price of a ‘zero period’ bond is one.26

The continuously compounded yield on an n-day zero-coupon bond at time t, yt,n =

− 1
n ln (Pt,n), is given by:

yt,n = An +Bnxt (14)

where An ≡ − 1
nAn

(
δ0, δ1,µ

Q,ΦQ,Σ;An−1,Bn−1
)

and Bn ≡ − 1
nBn

(
δ1,Φ

Q;Bn−1
)
.

The risk-neutral yield on an n-day bond reflects the expectation of the average short-term

interest rate over the n-day life of the bond, corresponding to the yields that would prevail

if investors were risk-neutral.27 That is, the yields that would arise under the expectations

hypothesis of the yield curve. The risk-neutral yields can be calculated using:

ỹt,n = Ãn + B̃nxt (15)

where Ãn ≡ − 1
nAn (δ0, δ1,µ,Φ,Σ;An−1,Bn−1) and B̃n ≡ − 1

nBn (δ1,Φ;Bn−1).28 Note that,

because no-arbitrage is assumed, the bonds are priced under the risk-adjusted measure Q, so

the fitted yields are attained using parameters from the risk-adjusted probability measure Q —

specifically
{
µQ,ΦQ}. The risk-neutral yields are attained using parameters from the actual

probability measure P, {µ,Φ}.
The spot term premium on an n-day bond is defined as the difference between the fitted

yield (equation (14)) and the risk-neutral yield (equation (15)):

tpt,n = yt,n − ỹt,n (16)

3.2 Unaugmented GADTSMs and the Identification Problem

Numerous studies have documented the problems in separately identifying expectations of future

short-term interest rates (the risk-neutral yields) from term premia (see, for example: Bauer

et al., 2012; Duffee and Stanton, 2012; Kim and Orphanides, 2012; Guimarães, 2014). The

underlying source of difficulty is an informational insufficiency, which gives rise to finite sample

26See appendix C.1 for a formal derivation of these expressions.
27There is a small difference between risk-neutral yields and expected yields due to a convexity effect. In

the homoskedastic model considered here, these effects are constant for each maturity and, in practice, small,
corresponding to the 1

2
Bn−1ΣΣ′B′n−1 term in the recursive expression for Bn above.

28See appendix C.3 for a formal derivation of these expressions.
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bias as its symptom.

The unaugmented model uses data on zero-coupon bond yields as its sole input. This data

provides a complete set of information about the dynamic evolution of the cross-section of yields

— the yield curve. This provides sufficient information to accurately identify the risk-adjusted

Q dynamics — specifically, the parameters
{
µQ,ΦQ} in equation (9) — which equation (14)

shows are of direct relevance to estimating actual yields. However, if there is no additional

information and the sample of yields contains too few interest rate cycles,29 this data is not

sufficient for the identification of the actual P dynamics — specifically, the parameters {µ,Φ}
in equation (5) — which equation (15) illustrates are of relevance to the estimation of risk-

neutral yields. Estimates of Φ in equation (5) will suffer from finite sample bias. In particular,

the persistent yields will have persistent pricing factors, so maximum likelihood or ordinary

least squares estimates of the persistence parameters of the vector autoregressive process in

equation (5) Φ will be biased downwards.30 That is, the estimated Φ̂ will understate the true

persistence of the pricing factors, implying a spuriously fast mean reversion of future short-

term interest rates.31 Because, in the model, agents form expectations of future short-term

interest rates based on estimates of pricing factor mean reversion in Φ̂, their estimates of the

future short-term interest rate path will mean revert spuriously quickly too. Consequently,

the estimated risk-neutral yields, which summarise the average of the expected path of future

short-term interest rates, will vary little and will not accurately reflect the evolution of interest

rate expectations.

The magnitude of the finite sample bias is increasing in the persistence of the data. So for

daily frequency yield data, which is highly persistent, the bias will be more severe. This not

only motivates the augmentation of the GADTSM with additional data, but motivates the use

of additional daily frequency data, namely: OIS rates.

4 The OIS-Augmented Model

To augment the model with OIS rates, I employ Kalman filter-based maximum likelihood es-

timation. The Kalman filtering approach is particularly convenient for the augmentation of

GADTSMs, as it can handle mixed-frequency data. Specifically, for OIS-augmentation, this

allows estimation of the GADTSM for periods extending beyond that for which OIS rates are

available.32 Moreover, Duffee and Stanton (2012) find that Kalman filtering methods, which

assume all bond yields are priced with error, provide better parameter estimates than for mod-

29Kim and Orphanides (2012, p. 242) state that a term structure samples spanning 5 to 15 years may contain
too few interest rate cycles.

30This is a multivariate generalisation of the downward bias in the estimation of autoregressive parameters by
ordinary least squares in the univariate case.

31Bauer et al. (2012) highlight the persistence of the pricing factors by considering, inter alia, the maximum

eigenvalue of Φ̂.
32In this paper, I use daily US OIS rates from 2002, the first date for which these rates are consistently available

at all the relevant tenors on Bloomberg. I estimate the GADTSMs from this date to directly isolate the effect
of OIS rates on GADTSM. However, Lloyd (2016b) applies an OIS-augmented GADTSM estimated from July
1990 to December 2015, with OIS rates from 2002, to assess the relative efficacy of various interest rate channels
of unconventional monetary policy.
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els in which only a subset of yields are priced with error. Guimarães (2014) applies Kalman

filter-based estimation to a survey-augmented GADTSM and concludes that, when parameter

estimates from the unaugmented model, identified with the Joslin, Singleton, and Zhu (2011)

normalisation scheme, are used as initial values for the survey-augmented model, the optimisa-

tion routine converges to the optimum very quickly.

To implement the Kalman filter-based estimation, I use equation (5), the vector autore-

gression for the latent pricing factors under the actual P probability measure, as the transition

equation.

The observation equation differs depending on whether or not OIS rates are observed on

day t or not. On days when the OIS rates are not observed (i.e. days prior to January 2002),

the observation equation is formed by stacking the N yield maturities in equation (14) to form:

yt = A + Bxt + ΣY ut (17)

where: yt = [yt,n1 , ..., yt,nN ]′ is the N × 1 vector of bond yields; A = [An1 , ..., AnN ]′ is an

N × 1 vector and B =
[
B′n1

, ..., B′nN
]′

is an N × K matrix of bond-specific loadings; Anι =

− 1
nι
Anι

(
δ0, δ1,µ

Q,ΦQ,Σ;Anι−1 ,Bnι−1

)
andBnι = − 1

nι
Bnι

(
δ1,Φ

Q;Bnι−1

)
are the bond-specific

loadings; and ι = 1, 2..., N such that nι denotes the maturity of bond ι in days. The N × 1

vector ut ∼ N (0N , IN ) denotes the yield measurement error, where 0N is an N -vector of zeros

and IN is an N × N identity matrix. Here, like much of the existing literature,33 I impose a

homoskedastic form for the yield measurement error, such that ΣY is an N×N diagonal matrix

with common diagonal element σe, the standard deviation of the yield measurement error.

The homoskedastic error is characterised by a single parameter σe, maintaining computational

feasibility for an already high-dimensional maximum likelihood routine.

On days when OIS rates are observed, the observation equation for the Kalman filter is

augmented with OIS rates. The following proposition illustrates that OIS rates can (approxi-

mately) be written as an affine function of the pricing factors with loadings Aoisj and Bois
j for

J different OIS maturities, where j = j1, j2, ..., jJ denote the J OIS horizons in days. The

loadings presented in this proposition are calculated by assuming that the expectations hypoth-

esis (equation (3)) holds for the OIS tenors included in the model, an assumption that was

verified in section 2 for the maturities used here. Moreover, the loadings explicitly account

for the compounding involved in calculating the floating leg of the OIS contract. It is in this

respect that the technical setup of the OIS-augmented GADTSM most clearly differs from the

survey-augmented model. In the latter, the loadings are based on an arithmetic expectational

structure.

Proposition The j-day OIS rate ioist,t+j , where j = j1, j2, ...jJ , can be (approximately) written

as an affine function of the pricing factors xt:

ioist,t+j = Aoisj +Bois
j xt (18)

33See, for example, Guimarães (2014).
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where Aoisj ≡ 1
jA

ois
j

(
δ0, δ1,µ,Φ,Σ;Aoisj−1,Boisj−1

)
and Bois

j ≡ 1
jB

ois
j

(
δ1,Φ;Boisj−1

)
are recursively

defined as:

Aoisj = δ0 + δ′1µ+Aoisj−1 + Boisj−1µ

Boisj = δ′1Φ + Boisj−1Φ

where Aois0 = 0 and Bois0 = 0′K , where 0K is a K × 1 vector of zeros.

Proof : See appendix D.

Given this, the observation equation of the Kalman filter on the days OIS rates are observed

is: [
yt

ioist

]
=

[
A

Aois

]
+

[
B

Bois

]
xt +

[
ΣY

ΣO

]
uoist (19)

where, in addition to the definitions of A, B and ΣY above: ioist =
[
ioist,j1 , ..., i

ois
t,jJ

]′
is the J × 1

vector of OIS rates; Aois =
[
Aoisj1 , ..., A

ois
jJ

]′
is a J × 1 vector and Bois =

[
Bois
j1

′
, ..., Bois

jJ

′
]′

is a

J ×K matrix of OIS-specific loadings; and uoist ∼ N (0N+J , IN+J) denotes the yield and OIS

measurement error, where 0N+J is an N + J-vector of zeros and IN+J is an (N + J)× (N + J)

identity matrix. The inclusion of the measurement error permits non-zero OIS forecast errors

and imposes that this forecast error is zero on average. I tested two parameterisations of

the volatility matrix ΣO a J × J diagonal matrix, for OIS measurement errors: one with

distinct volatilities for each OIS maturity and another with common volatilities. Both include

independent errors — diagonal ΣO. After testing the two, I impose a homoskedastic form

for the OIS measurement error, such that ΣO has common diagonal element σo, the standard

deviation of the OIS measurement error.34 The imposition of homoskedastic OIS measurement

errors also provides computational benefits, as there are fewer parameters to estimate than if a

more general measurement error covariance structure was permitted.35

5 Methodology

5.1 Data

In all models, bond yields yt of the following maturities are used: 3 and 6 months, 1 year, 18

months, 2 years, 30 months, 3 years, 42 months, 4 years, 54 months, 5, 7 and 10 years.36 For

the 3 and 6-month yields, I use US T-Bill rates — made available by the Federal Reserve —

in accordance with much of the existing dynamic term structure literature and evidence from

34The risk-neutral yields from the homoskedastic model provide a superior fit for interest rate expectations,
vis-à-vis other survey and market-based measures of interest rate expectations, relative to the heteroskedastic
model.

35Kim and Orphanides (2012) and Guimarães (2014) impose homoskedasticity on the survey measurement
errors in their Kalman filter setup for this reason.

36These yield maturities correspond to those used by Adrian, Crump, and Moench (2013).
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Greenwood, Hanson, and Stein (2015), who document a marked wedge between 1-26-week T-

Bill rates and corresponding maturity fitted zero-coupon bond yields.37 The remaining rates are

from the continuously compounded zero-coupon yields of Gürkaynak, Sack, and Wright (2007a).

This data is constructed from daily-frequency fitted Nelson-Siegel-Svensson yield curves. Using

the parameters of these curves, which are published along with the estimated zero-coupon yield

curve, I back out the cross-section of yields for the 11 maturities from 1 to 10-years.38

OIS rates are from Bloomberg. I use combinations of 3, 6, 12 and 24-month OIS rates in

the OIS-augmented models. The choice of these maturities is motivated by evidence in section

2 and Lloyd (2016a). Since US OIS rates are only consistently available from January 2002,

my baseline estimation sample period runs from January 2002 to December 2015 to isolate the

effect of OIS augmentation on GADTSM estimation.

5.2 Estimation

The OIS-augmented model relies on Kalman filter-based maximum likelihood estimation, for

which the pricing factors xt are latent. Normalisation restrictions must be imposed on the

parameters to achieve identification. For this, I appeal to the normalisation scheme of Joslin

et al. (2011), which “allows for computationally efficient estimation of G[A]DTSMs” (Joslin

et al., 2011, p. 928) and fosters faster convergence to the global optimum of the model’s

likelihood function than other normalisation schemes (see, for example: Dai and Singleton,

2000).39 This permits a two-stage approach to estimating the OIS-augmented model.

To benefit fully from the computational efficiency of the Joslin et al. (2011) normalisation

scheme, I first estimate the unaugmented GADTSM (hereafter, labelled the OLS/ML model),

presented in section 3.1, assuming that K portfolios of yields are priced without error, to

attain initial values for the Kalman filter used in the second estimation stage. In particular,

these K yield ‘portfolios’, xt, correspond to the first K estimated principal components of the

bond yields. Under the Joslin et al. (2011) normalisation, this itself enables a two sub-stage

estimation: first the P parameters are estimated by OLS on equation (5) using the K estimated

principal components in the vector xt; second the Q parameters are estimated by maximum

likelihood (see appendix E for details).

Having attained these OLS/ML parameter estimates, I second estimate the OIS-augmented

model — which assumes all yields are observed with error — using the OLS/ML parameter

estimates as initial values for the Kalman filter-based maximum likelihood routine.

37To foster comparison with zero-coupon bond yields, the T-Bill rates are converted from their discount basis
to the yield basis.

38The Nelson-Siegel-Svensson yield curve equation used to back out the cross-section of yields at a daily
frequency is reported in equation (22) of Gürkaynak, Sack, and Wright (2006), an earlier working paper version
of Gürkaynak et al. (2007a).

39The computational benefits of the Joslin et al. (2011) normalisation scheme arise because it only imposes
restrictions on the short-rate and the factors xt under the Q probability measure. Consequently, the P and Q
dynamics of the model do not exhibit strong dependence. Under the Dai and Singleton (2000) scheme, restrictions
on the volatility matrix Σ, which influences both the P and Q evolution of the factors (see equations (5) and (9)),
create a strong dependence between the parameters under the two probability measures, engendering greater
computational complexity in the estimation.
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6 Term Structure Results

In this section, I provide estimation results for the following GADTSMs, each estimated at a

daily frequency: (1) an unaugmented OLS/ML model, estimated using the Joslin et al. (2011)

identification scheme where K portfolios of yields are observed without error and are measured

with the first K estimated principal components of the bond yields; (2) the Bauer et al. (2012)

bias-corrected model; (3) a survey-augmented model, using expectations of future short-term

interest rates for the subsequent four quarters as an additional input, estimated with the Kalman

filter using the algorithm of Guimarães (2014) (see appendix E for details);40 and (4) the OIS-

augmented model, described above. I estimate three variants of the OIS-augmented model. The

first, baseline setup, includes the 3, 6, 12 and 24-month OIS rates (4-OIS-Augmented model).

The second and third models include the 3, 6 and 12-month (3-OIS-Augmented model) and

3 and 6-month (2-OIS-Augmented model) tenors respectively.41 Of the three OIS-augmented

models, I find that the 4-OIS-Augmented model provides risk-neutral yields that best fit the

evolution of interest rate expectations, in and out-of-sample.

In accordance with the well-rehearsed evidence of Litterman and Scheinkman (1991), that

the first three principal components of bond yields explain well over 95% of their variation,

I estimate the models with three pricing factors (K = 3).42 By using the three-factor spec-

ification, for which the pricing factors have a well-understood economic meaning (the level,

slope and curvature of the yield curve respectively), I am able to isolate and explain the eco-

nomic mechanisms through which the OIS-augmented model provides superior estimates of

expectations of future short-term interest rates vis-à-vis the unaugmented, bias-corrected and

survey-augmented models.

6.1 Model Fit

In this sub-section, I discuss four aspects of model fit: estimated bond yields, estimated OIS

rates, estimated pricing factors and parameter estimates.

6.1.1 Fitted Bond Yields

Importantly, the augmentation of the GADTSM with OIS rates does not compromise the overall

fit of the model with respect to actual bond yields. The overall actual yield fit is strikingly

similar across all the models estimated. Figure 2 provides illustrative evidence of this, plotting

40For direct comparison to my OIS-augmented model, I estimate the survey-augmented model by applying the
algorithm of Guimarães (2014), who also uses the same Joslin et al. (2011) identification scheme as me. Kim
and Orphanides (2012) implement a different identification scheme in the estimation of their survey-augmented
model. Like Guimarães (2014), I use survey expectations from the Survey of Professional Forecasters at the
Federal Reserve Bank of Philadelphia, including forecasts of the 3-month T-Bill rate for the remainder of the
current quarter and the first, second, third and fourth quarters ahead.

41Because the results from the 2-OIS-augmented model are inferior to those from the 4 and 3-OIS-augmented
models, I present results for the 2-OIS-augmented model in appendix F.

42I also estimate a four factor specification in the light of evidence by Cochrane and Piazzesi (2005, 2008) and
Duffee (2011) who argue that more than three factors are necessary to explain the evolution of nominal Treasury
yields. These results are reported in appendix F.2.
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Figure 2: Residual of the 2-Year Fitted Yield from GADTSMs
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Note: Residuals of the 2-year fitted yield from five GADTSMs: (i) the unaugmented model estimated by OLS
and maximum likelihood (OLS/ML); (ii) the bias-corrected model (Bias-Corrected); (iii) the survey-augmented
model (Survey); (iv) the 4-OIS-augmented model (4-OIS); and (v) the 3-OIS-augmented model (3-OIS). The
models are estimated with three pricing factors, using daily data from January 2002 to December 2015. The

residual is defined as the actual yield subtracted by the model-implied fitted yield. The residuals are presented
in annualised percentage points.

the residuals of the 2-year fitted yield from the OLS/ML, bias-corrected, survey-augmented,

4-OIS-augmented and 3-OIS-augmented models. The residuals from each model follow similar

qualitative and quantitative paths.43

The similar actual yield fit of the models is intuitive. I augment the GADTSM with OIS rates

to provide additional information with which to better estimate parameters under the actual

probability measure P {µ,Φ}, which directly influences estimates of the risk-neutral yields.

Estimates of the fitted yield depend upon the risk-adjusted measure Q parameters
{
µQ,ΦQ},

which are not directly influenced by the OIS rates in the model, and are well-identified with

bond yield data that provides information on the dynamic evolution of the cross-section of

yields.

6.1.2 Fitted OIS Rates

Alongside estimates of the actual bond yield, the OIS-augmented models also provide fitted

values for OIS rates. Figure 3 presents evidence that the OIS-augmented models provide ac-

curate estimates of actual OIS rates, by plotting the 3, 6, 12 and 24-month OIS rates against

the corresponding-maturity fitted-OIS rates from the 4, 3 and 2-OIS-augmented models.44 The

plots illustrate that the 4-OIS-augmented model best fits the 3, 6, 12 and 24-month OIS rates.

43Table 8, in appendix F.1, provides more detailed evidence of the similar actual yield fit of the models,
documenting the root mean square error (RMSE) for each model at each yield maturity.

44Table 9, in appendix F.1, provides more detailed numerical evidence to support the claim.

19



Figure 3: Fitted OIS Rates from the OIS-Augmented Models
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Note: Fitted and actual 3, 6, 12 and 24-month OIS rates. Fitted OIS rates are from the 4, 3 and
2-OIS-augmented GADTSMs. The models are estimated with three pricing factors using daily data from

January 2002 to December 2015. All figures are in annualised percentage points.

This is unsurprising, as these four OIS rates are observed variables in the 4-OIS-augmented

model. The 3-OIS-augmented model fits the 3, 6 and 12-month OIS rates well too. Moreover,

the 3-OIS-augmented model captures the major qualitative patterns in the 2-year OIS rate —

with the exception of the 2011-3 period — despite the 2-year OIS rate not being observed in

the model. The 2-OIS-augmented model fits OIS rates least well. This is unsurprising, as it

uses the fewest OIS rates as observables.

The fact the OIS-augmented models do not fit OIS rates as well as they fit bond yields —

the quantitative value of OIS-RMSE (approximately 10 basis points) is almost double that of

the bond yield-RMSE (approximately 5 basis points) — is neither worrying nor surprising. The

GADTSM uses thirteen bond yields as inputs to estimate the cross-section of fitted yields in

every time period, whereas only four OIS rates are used to fit the cross-section of OIS rates.

Moreover, adding additional OIS rates is not warranted given that they are included to improve

the fit of model-implied interest rate expectations and that longer-maturity OIS rates contain

significant term premia (Lloyd, 2016a).
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Figure 4: Estimated Principal Components of the Actual Bond Yields and Estimated Pricing
Factors from the 4-OIS-Augmented Model
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Note: Estimated principal components from the actual bond yield data with the following maturities: 3, 6, 12,
18, 24, 30, 36, 42, 48, 54, 60, 84 and 120 months. Estimated pricing factors from the three-factor

4-OIS-augmented model, implied by the Kalman filter.

6.1.3 Pricing Factors

Of additional interest for the OIS-augmented model is whether the inclusion of OIS rates affects

the model’s pricing factors xt. To investigate this, I compare the estimated principal components

of the bond yields — used as pricing factors in the OLS/ML model — to the estimated model-

implied pricing factors from Kalman filter estimation of the OIS-augmented models. Figure 4

plots the time series of the first three principal components, estimated from the panel of bond

yields, against the estimated pricing factors from the 4-OIS-augmented model. For all three

factors, the Kalman filter-implied pricing factors are nearly identical to the estimated principal

components.45 This implies that OIS rates do not include any additional information, over and

above that in bond yields, of value in fitting the actual yields. This, again, is intuitive: OIS

rates are included in the GADTSM to provide information useful for the identification of the

risk-neutral yields, not the fitted yields.

45Table 10, in appendix F.1, demonstrates that the summary statistics of the estimated principal components
and pricing factors are almost identical too.
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6.1.4 Parameter Estimates

Recall, from section 3.2, that informational insufficiency in GADTSMs gives rise to finite sam-

ple bias. Persistent yields will have persistent pricing factors, resulting in estimates of the

persistence parameters Φ̂ that are biased downwards. Following Bauer et al. (2012), I numeri-

cally assess the extent to which OIS-augmentation reduces finite sample bias by reporting the

maximum eigenvalues of the estimated persistence parameters Φ̂. The higher the maximum

eigenvalue, the more persistent the estimated process.

As a benchmark, the maximum absolute eigenvalue of Φ̂ for the unaugmented OLS/ML

model is 0.9987. For both the survey and 4-OIS-augmented models, the maximum absolute

eigenvalue of Φ̂ is 0.9993, indicating that, in comparison to the unaugmented model, augmenta-

tion with additional information does serve to mitigate finite sample bias.46 This indicates that

OIS-augmentation does help to resolve the informational insufficiency in GADTSMs, and its

associated symptoms. However, to assess this more thoroughly, a comparison of model-implied

interest rate expectations is necessary. A well-identified model should accurately reflect the

evolution of interest rate expectations.

6.2 Model-Implied Interest Rate Expectations

The central focus of this paper is the identification and estimation of interest rate expectations

within GADTSMs — the risk-neutral yields. Figure 5 plots the 2-year risk-neutral yields and

term premia from the GADTSMs estimated between January 2002 and December 2015 in panels

A and B, respectively.

Panel A of figure 5 offers illustrative evidence of the effect of OIS-augmentation on the

GADTSM estimates of expected future short-term interest rates. For the majority of the 2002-

15 sample period, the five models exhibit similar qualitative patterns: rising to peaks and falling

to troughs at similar times. However, there are also a number of notable differences between

the series that help to illustrate the benefits of OIS-augmentation.

For the majority of the 2002-15 sample period, the OIS-augmented models generate risk-

neutral yields that exceed those from the OLS/ML and bias-corrected models.

Moreover, marked differences exist in the evolution risk-neutral yield estimates from the

models from late-2008 onwards. These differences have contradictory and counterfactual im-

plications for the efficacy of monetary policy at this time. First, from late-2009 to late-2011,

the risk-neutral yields from the OLS/ML and bias-corrected models are persistently negative,

implying counterfactual expectations of negative interest rates. In contrast, unlike the other

models, the risk-neutral yields implied by the OIS-augmented model obey the zero lower bound

— i.e. estimated interest rate expectations never fall negative — despite the fact additional

restrictions are not imposed to achieve this. This represents an important computational contri-

bution in the light of recent computationally burdensome proposals for term structure modelling

46The corresponding statistic for the bias-corrected model, which performs bias-correction directly on the Φ, is
1.0000 (to four decimal places). However, as the ‘true’ persistence of the pricing factors is unknown, a comparison
of the bias-corrected model with survey and OIS-augmented models is not possible on these grounds.
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Figure 5: Estimated Yield Curve Decomposition
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Note: In panels A and B, I plot the estimated risk-neutral yields and term premia from each of five GADTSMs,
respectively. The five models are: (i) the unaugmented model estimated by OLS and maximum likelihood

(OLS/ML); (ii) the bias-corrected model (Bias-Corrected); (iii) the survey-augmented model (Survey); (iv) the
4-OIS-augmented model (4-OIS); and (v) the 3-OIS-augmented model (3-OIS). The models are estimated with

three pricing factors, using daily data from January 2002 to December 2015. All figures are in annualised
percentage points.

at the zero lower bound (see, for example Christensen and Rudebusch, 2013a,b).

Second, between late-2011 and 2013, the 2-year risk neutral yields from the OLS/ML and

bias-corrected models rise to a peak during 2012, indicating an increase in expected future short-

term interest rates over a 2 year horizon. In contrast, during the 2011-13 period, the 2-year

risk-neutral yield estimates from the 3-OIS-augmented model remain broadly stable, while the

corresponding estimates from the 4-OIS-augmented model fall slightly to a trough. Between

late-2011 and 2013, the Federal Reserve engaged in forward guidance designed to influence

investors’ expectations of future short-term interest rates, signalling that interest rates would

be kept at a low level for an extended period of time. For instance, on January 25, 2012, the

Federal Open Market Committee (FOMC) stated that “economic conditions [...] are likely to

warrant exceptionally low levels for the federal funds rate at least through late-2014,” while

on September 13, 2012 this time-dependent guidance was altered to signal a more delayed rate
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rise: “low levels for the federal funds rate are likely to be warranted at least through mid-

2015.” These statements imply that policymakers’ were seeking to defer investors’ expectations

of future rate rises between late-2011 and 2013. In this respect, the finding that expectations

of future short-term interest rates over the coming 2 years rose during this period, as implied

by the OLS/ML and bias-corrected models, appears counter-intuitive. These models predict

that investors began to expect rate rises sooner rather than later. Subsequent quantitative

analysis demonstrates that the OIS-augmented models provide superior estimates of interest

rate expectations during this period. The OIS-augmented models imply that investors were

expecting rate rises no sooner, and possibly slightly later, than they had in previous period.

6.2.1 Risk-Neutral Yields and Federal Funds Futures

I begin the quantitative evaluation of GADTSM-implied risk-neutral yields by comparing the

model-implied interest rate expectations to federal funds futures rates. A federal funds futures

contract pays out at maturity based on the average effective federal funds rate realised during

the calendar month specified in the contract.

Federal funds futures rates have long been used as measures of investors’ expectations of

future short-term interest rates (Lao and Mirza, 2015) and many authors have assessed the

quantitative accuracy of federal funds futures rates as predictors of future monetary policy.

Gürkaynak et al. (2007b) conclude that, in comparison to a range of other financial market-

based measures of interest rate expectations, federal funds futures rates provide the superior

forecasts of future monetary policy out to 6 months. Lloyd (2016a) finds that, at a monthly

frequency between 2002 and 2015, the average ex post realised excess returns on 1-11-month

federal funds futures contracts are insignificantly different from zero. Motivated by this evidence,

I compare estimated risk-neutral yields from each of the GADTSMs to corresponding-horizon

1-11-month federal funds futures contracts.

To facilitate this comparison, I first calculate 1, 2, ..., 11-month risk-neutral yields using

the estimated model parameters from each GADTSM. I then calculate risk-neutral 1-month

instantaneous forward yields using the estimated risk-neutral yields.47 Like federal funds futures

contracts, the risk-neutral 1-month forward rates settle based on outcomes during a 1 month

period in the future. However, because of the settlement structure of federal funds futures

contracts, I compare risk-neutral forward yields and federal funds futures rates on the final day

of each calendar month.48 I find that the risk-neutral forward yields from the 4-OIS-augmented

47To calculate the risk-neutral instantaneous forward rate f̃t1,t2 , I use the following formula:

f̃t1,t2 =
1

d2 − d1

(
1 + ỹ2d2
1 + ỹ1d1

− 1

)
where ỹ1 (ỹ2) is the risk-neutral yield for the time period (0, t1) ((0, t2)) and d1 (d2) is the time length between
time 0 and time t1 (t2) in years.

48See Lloyd (2016a) for a detailed description of the settlement structure of federal funds futures contracts.
The salient point here is that an n-month federal funds futures contract traded on day ti of the calendar month t
has the same settlement period as an n-month contract traded on a different day tj in the same calendar month
t. For this reason, the horizon of a federal funds futures contract and the risk-neutral forward yield only align
on the final calendar day of each month.
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Table 2: GADTSM-Implied Expectations: Root Mean Square Error (RMSE) of the
Risk-Neutral 1-Month Forward Yields vis-à-vis Corresponding Horizon Federal Funds Futures

Rates

Sample: January 2002 to December 2015
Maturity OLS/ML BC Survey 4-OIS 3-OIS

0→ 1 Months 0.2304 0.2270 0.2044 0.1912 0.2034
1→ 2 Months 0.2258 0.2165 0.1840 0.1359 0.1474
2→ 3 Months 0.2483 0.2333 0.1901 0.0956 0.1110
3→ 4 Months 0.2940 0.2745 0.2240 0.0916 0.1076
4→ 5 Months 0.3407 0.3178 0.2595 0.1013 0.1143
5→ 6 Months 0.3905 0.3657 0.2972 0.1135 0.1284
6→ 7 Months 0.4489 0.4226 0.3452 0.1343 0.1399
7→ 8 Months 0.5091 0.4829 0.3944 0.1470 0.1583
8→ 9 Months 0.5735 0.5491 0.4516 0.1507 0.1902
9→ 10 Months 1.0458 1.0263 0.9323 0.6881 0.7439
10→ 11 Months 2.4287 2.5077 2.2411 2.0179 2.0797

Note: RMSE of the risk-neutral 1-month forward yields from each of the five GADTSMs in comparison
to corresponding-horizon federal funds futures rates. The five models are: (i) the unaugmented model
estimated by OLS and maximum likelihood (OLS/ML); (ii) the bias-corrected model (Bias-Corrected);
(iii) the survey-augmented model (Survey); (iv) the 4-OIS-augmented model (4-OIS); and (v) the 3-OIS-
augmented model (3-OIS). The models are estimated with three pricing factors, using daily data from
January 2002 to December 2015. The risk-neutral forward yields and the federal funds futures rates are
compared on the final day of each calendar month. All figures are in annualised percentage points. The
lowest RMSE model at each maturity has been emboldened for ease of reading.

model most closely align with corresponding-horizon federal funds futures rate, implying that

the 4-OIS-augmented model provides superior estimates of investors’ expected future short-term

interest rates.

Table 2 provides formal evidence in support of this conclusion, presenting the RMSE of risk-

neutral 1-month forward yields from different GADTSMs and corresponding-horizon federal

funds futures rates. On a RMSE basis, the OIS-augmented models unambiguously provide

superior estimates of expected future short-term interest rates, as measured by federal funds

futures rates, at every horizon. Moreover, of the OIS-augmented models, the 4-OIS-augmented

model best fits federal funds future-implied interest rate expectations at each horizon. Even

at extremely short horizons, the benefits of OIS-augmentation are large: the RMSE fit of the

unaugmented OLS/ML and bias-corrected models at the 3 → 4 month horizon is over three

times larger than that of the 4-OIS-augmented model.

Despite fitting federal funds futures-implied interest rate expectations worse than the OIS-

augmented models, the survey-augmented model does perform better than the unaugmented

OLS/ML and bias-corrected models in this regard. This supports the claim that, while survey-

augmentation does help to reduce the informational insufficiency problem in GADTSMs, quar-

terly frequency survey expectations are not sufficient for the accurate identification of interest

rate expectations at higher frequencies.

Figure 6 provides visual comparison of the risk-neutral 1-month forward yields and corresponding-

horizon federal funds futures rates. Here, I plot the risk-neutral 1-month forward yields from
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Figure 6: Estimated Risk-Neutral 1-Month Forward Yields and Comparable-Horizon Federal
Funds Futures (FFF) Rates
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Note: I plot estimated 3 to 4-month and 6 to 7-month ahead risk-neutral forward yields from each of five
GADTSMs. The five models are: (i) the unaugmented model estimated by OLS and maximum likelihood

(OLS/ML); (ii) the bias-corrected model (Bias-Corrected); (iii) the survey-augmented model (Survey); (iv) the
4-OIS-augmented model (4-OIS); and (v) the 3-OIS-augmented model (3-OIS). The models are estimated with

three pricing factors, using daily data from January 2002 to December 2015. I compare the estimated
risk-neutral forward yields to corresponding-horizon federal funds futures (FFF) rates, plotted on the final day

of each calendar month. All figures are in annualised percentage points.

the unaugmented OLS/ML, bias-corrected, survey-augmented, 4-OIS-augmented and 3-OIS-

augmented GADTSMs against corresponding horizon federal funds futures rates. The plot

highlights the causes of the difference in fit highlighted by table 2. Three important observa-

tions follow.

First, between 2002 and 2005, the OLS/ML, bias-corrected and survey-augmented GADTSMs

generate estimated risk-neutral forward yields that persistently fall below the corresponding

horizon federal funds futures rate. In contrast, the estimated risk-neutral forward yields from

the OIS-augmented models align more closely with federal funds futures rates during this period,

especially at the 3 to 4-month horizon.

Second, between early-2006 and mid-2007, the risk-neutral forward yields from the OLS/ML

and survey-augmented models fall substantially below the interest rate expectations implied by
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federal funds futures rates. The risk-neutral forward yields from the bias-corrected model also

fall below the interest rate expectations implied by federal funds futures rates, albeit to a lesser

extent. In contrast, the risk-neutral forward yields from the OIS-augmented models closely

align with federal funds futures during this period.

Third, from 2009 onwards, the risk-neutral forward yields from the OLS/ML, bias-corrected

and survey-augmented models differ greatly from the corresponding-horizon federal funds fu-

tures rates. Moreover, these models offer counterfactual predictions for the evolution of interest

rate expectations during this period. In particular, from early-2009 to late-2011, the risk-neutral

forward yields from the OLS/ML and bias-corrected models are persistently negative, implying

that investors expected future short-term interest rates to fall negative. Moreover, from late-

2011 to mid-2012, the risk-neutral forward yields from the OLS/ML and bias-corrected models

rise to a peak. Not only is this contrary to the policy narrative at the time — policymakers

were engaging in time-dependent forward guidance that sought to push back the date investors

expected policy rates to lift-off from their zero lower bound — it is also counterfactual with

respect to market-implied interest rate expectation. In contrast, the OIS-augmented models

align closely with federal funds futures-implied expectations from December 2008 onwards.

Overall, the comparison of risk-neutral forward yields and federal funds rates supports the

claim that OIS-augmentation of GADTSMs serves to improve the identification of interest rate

expectations.

6.2.2 Risk-Neutral Yields and Short-Term Survey Expectations

As further evidence in support of this claim, I compare the model-implied interest rate ex-

pectations to short-term survey expectations. The preferred GADTSM(s) should also be able

to reasonably capture the qualitative and quantitative evolution of comparable-horizon survey

expectations. Against this metric, I find that the 4-OIS-augmented model provides superior

overall estimates of short-term interest rate expectations, in comparison to all other models.

I compare the estimated 3, 6 and 12-month risk-neutral yields to corresponding-horizon

survey expectations. I calculate approximate short-term interest rate expectations using data

from the Survey of Professional Forecasters at the Federal Reserve Bank of Philadelphia. I

construct the weighted arithmetic average of the mean expectation of the 3-month T-Bill rate

in the current quarter and the first, second, third and fourth quarters ahead. A complete

description of how these expectations are approximated is presented in appendix B. To compare

the estimated risk-neutral yields to these survey expectations, I calculate the RMSE of the risk-

neutral yields vis-à-vis the corresponding horizon survey expectation on survey submission

deadline dates.

Table 3 presents the results of this analysis. On a RMSE basis, the OIS-augmented models

unambiguously provide superior estimates of expected future short-term interest rates at each

horizon. By this metric, the OLS/ML and bias-corrected models provide the most inferior

estimates of future short-term interest rate at all three horizons.

At the 6 and 12-month horizons the 4-OIS-augmented model provides the superior fit of
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Table 3: GADTSM-Implied Expectations: Root Mean Square Error (RMSE) of the In-Sample
Risk-Neutral Yields vis-à-vis 3, 6-Month and 1-Year Survey Expectations

Sample: January 2002 to December 2015
Model RMSE vs.

3-Month Survey
Expectation

RMSE vs.
6-Month Survey

Expectation

RMSE vs. 1-Year
Survey

Expectation

OLS/ML 0.2252 0.2856 0.4748
Bias-Corrected 0.2243 0.2865 0.4864
Survey 0.1776 0.2023 0.3487
4-OIS 0.1756 0.1509 0.1677
3-OIS 0.1719 0.1650 0.2203

Note: RMSE of the risk-neutral yields from each of the five GADTSMs in comparison to approx-
imated survey expectations. The five models are: (i) the unaugmented model estimated by OLS
and maximum likelihood (OLS/ML); (ii) the bias-corrected model (Bias-Corrected); (iii) the survey-
augmented model (Survey); (iv) the 4-OIS-augmented model (4-OIS); and (v) the 3-OIS-augmented
model (3-OIS). The models are estimated with three pricing factors, using daily data from January
2002 to December 2015. The construction of the survey expectation approximations is described
in appendix B. All figures are in annualised percentage points. The lowest RMSE model at each
maturity has been emboldened for ease of reading.

survey expectations. Strikingly, at the 1-year horizon, the RMSE fit of the OLS/ML and bias-

corrected models are almost three times that of the 4-OIS-augmented model. Although the

3-OIS-augmented model provides the lowest RMSE fit for the 3-month survey expectation, the

RMSE fit of the 4-OIS-augmented model is only 0.37 basis points higher at this horizon. In

contrast, at the 1-year horizon the RMSE fit of the 4-OIS-augmented model is 5.26 basis points

lower than the 3-OIS-augmented model.

Surprisingly, the survey-augmented model, which uses the same survey expectations as an

input to estimation, does not provide a superior fit for these expectations at any horizon vis-à-vis

the OIS-augmented models. This supports the claim that quarterly frequency survey expecta-

tions are not sufficient for the accurate identification of higher frequency interest rate expec-

tations within a GADTSM framework. Nevertheless, the RMSE fit of the survey-augmented

model is superior to the fit of both the OLS/ML and bias-corrected models at all horizons,

supporting the claim that augmentation of GADTSMs with additional information can aid the

identification of risk-neutral yields.

Figure 7 provides a graphical illustration of the evolution of estimated risk-neutral yields

and the approximated survey expectations at the 6 and 12-month horizons. Three observations

follow.

First, between 2002 and 2005, the OLS/ML, bias-corrected and survey-augmented GADTSMs

generated estimated risk-neutral yields that persistently fall below the corresponding horizon

survey expectation. In contrast, the estimated risk-neutral yields from the OIS-augmented

models closely co-move with the approximated survey expectations during this period. This

corroborates with the comparison of risk-neutral forward yields and federal funds future-implied

interest rate expectations in section 6.2.1.

Second, between early-2006 and mid-2007, the risk-neutral yields from the OIS-augmented

28



Figure 7: Short-Term Interest Rate Expectations
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Note: I plot estimated 6-month and 1-year risk-neutral yields from each of five GADTSMs in panels A and B,
respectively. The five models are: (i) the unaugmented model estimated by OLS and maximum likelihood

(OLS/ML); (ii) the bias-corrected model (Bias-Corrected); (iii) the survey-augmented model (Survey); (iv) the
4-OIS-augmented model (4-OIS); and (v) the 3-OIS-augmented model (3-OIS). The models are estimated with

three pricing factors, using daily data from January 2002 to December 2015. I compare the estimated
risk-neutral yields to approximated survey expectations of future short-term interest rates over the same

horizon. The construction of the survey expectation approximations is described in appendix B. All figures are
in annualised percentage points.

models exceed interest rate expectations implied by surveys. During this short period, the risk-

neutral yields from the OLS/ML, bias-corrected and survey-augmented models more closely

align with survey expectations. However, this difference appears is related to the information in

survey expectations, rather than the risk-neutral yields implied by the GADTSMs. Recall that

in figure 6, I find that the risk-neutral forward yields from the OIS-augmented models closely

align with federal funds futures-implied interest rate expectations during this period.

Third, as in section 6.2.1, the GADTSMs offer markedly different estimates of interest rate

expectations from December 2008 onwards. From early-2009 to late-2011, the 6 and 12-month

risk-neutral yields from the OLS/ML and bias-corrected models are persistently negative, imply-

ing, counter-factually, that investors expected future short-term interest rates to fall negative.

From late-2011 to mid-2012, the risk-neutral yields from the OLS/ML and bias-corrected mod-

els rise to peak. Again, this is both contrary to the policy narrative and the survey expectations

at the time. In contrast, the OIS-augmented models — the 4-OIS-augmented model especially

29



— align closely with survey expectations from December 2008 onwards. The risk-neutral yield

from the 4-OIS-augmented model closely tracks the survey expectations during 2012 especially.

Overall, the results further support the claim that the OIS-augmentation of GADTSMs

serves to improve the identification of interest rate expectations. At short-term horizons, OIS-

augmented models — the 4-OIS-augmented model especially — provide superior estimates of

investors’ expectations of future short-term interest rates.

6.2.3 Long-Term Interest Rate Expectations

The expectational horizons considered in the previous sub-section are short-term. However,

GADTSMs provide estimates of risk-neutral yields for the whole term structure, at horizons

further into the future. This is the an important motive for using GADTSMs to estimate

interest rate expectations, instead of market-based financial measures; market-based financial

measures seldom provide accurate measures of investors’ interest rate expectations at horizons

in excess of 2 years (see Lloyd, 2016a).

Within a GADTSM, the 10-year risk-neutral yield on date t provides an estimate for the ex-

pected average short-term interest rate for the 10 year period following date t. In general, survey

data on these longer-term interest rate expectations are not readily available, making it difficult

to systematically test the long-horizon interest rate expectations attained from GADTSMs.

However, in recent years, the New York Federal Reserve’s Survey of Primary Dealers have

asked respondents an increasing number of questions regarding their longer-term interest rate

expectations.49 Specifically, since October 2013, respondents have been asked to: “provide your

estimate of the longer run target federal funds rate and your expectation for the average federal

funds rate over the next 10 years”.50 The latter of these requests corresponds to the information

contained within the 10-year risk-neutral yields attained from the GADTSMs: the expectation

of the average of the short-term interest rate over a 10 year horizon.

To quantitatively assess the longer-term interest rate expectations implied by the GADTSMs,

I compare the estimated 10-year risk-neutral yield to the median “expectations for the average

federal funds rate over the next 10 years” of survey respondents on the survey deadline dates.

Again, I calculate the RMSE fit of the risk-neutral yields vis-à-vis the survey expectations.

Table 4 presents the results from this analysis. However, because the sample of long-term

survey expectations is relative short, the RMSE analysis in table 4 is not as rigorous as in

tables 2 and 3. Nevertheless, the results support the primary conclusion of this paper: that the

OIS-augmented models provide unambiguously superior estimates of future short-term interest

rate expectations over a 10-year horizon. The RMSE fit of the OLS/ML model is over three

times higher than the RMSE fit of the 4-OIS-augmented model.51

49The questions and results of these surveys are publicly available from: www.newyorkfed.org/markets/

primarydealer_survey_questions.html.
50In the surveys, the question preceding this was: “provide your estimate of the most likely outcome (i.e., the

mode) for the target federal funds rate or range at the end of each half-year period”.
51Although, for this sample, the RMSE fit of the 3-OIS-augmented model is lowest, the 19.99 basis point

difference is small in comparison to other models over the same 10-year horizon. With so few observations, a
difference this small is not sufficient to statistically distinguish the 3 and 4-OIS-augmented models.
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Table 4: GADTSM-Implied Expectations: Root Mean Square Error (RMSE) of the In-Sample
Risk-Neutral Yields vis-à-vis 10-Year Survey Expectation

Sample: October 2013 to December 2015
Model RMSE vs. 10-Year Expectation, Survey

of Primary Dealers

OLS/ML 1.6073
Bias-Corrected 1.9478
Survey 2.4433
4-OIS 0.5375
3-OIS 0.3376

Note: RMSE of the risk-neutral yields from each of the five GADTSMs in com-
parison to the 10-year survey expectation. The five models are: (i) the unaug-
mented model estimated by OLS and maximum likelihood (OLS/ML); (ii) the
bias-corrected model (Bias-Corrected); (iii) the survey-augmented model (Sur-
vey); (iv) the 4-OIS-augmented model (4-OIS); and (v) the 3-OIS-augmented
model (3-OIS). The models are estimated with three pricing factors, using
daily data from January 2002 to December 2015. The survey expectation is
from the Survey of Primary Dealers, New York Federal Reserve. All figures are
in annualised percentage points. The lowest RMSE model at each maturity
has been emboldened for ease of reading.

6.2.4 Daily Changes in GADTSM-Implied Interest Rate Expectations

In this paper, I have emphasised the benefits that OIS-augmentation offers for the identification

and estimation of interest rate expectations from GADTSMs at a daily frequency. As OIS rates

are available at a daily frequency, they offer potentially large benefits when estimating the daily

frequency evolution of interest rate expectations. To illustrate these benefits, I directly analyse

the daily changes in GADTSM-implied risk-neutral yields.

The analysis of daily changes in interest rate expectations is an integral part of historical

monetary policy analysis. Most recently, a number of authors have used daily changes in interest

rate expectations and term premia to assess the relative efficacy of various interest rate channels

of unconventional monetary policies (see Lloyd, 2016b, and the references within). For the OIS-

augmented GADTSM to be well-suited to historical policy analysis of this sort, it is important

that the risk-neutral yields provide an accurate depiction of the daily frequency evolution of

interest rate expectations. Specifically, for the GADTSM-implied interest rate expectations to

reasonably reflect the expectations of investors over a comparable horizon at a daily frequency,

they should, at the very least, qualitatively match numerical measures of investors’ interest

rate expectations. To test this, I compare the sign of daily changes in 3, 6 12 and 24-month

risk-neutral yields to the sign of daily changes in comparable-maturity OIS rates.52 For the

GADTSM to reasonably reflect investors’ expectations, the sign of the daily change in the

risk-neutral yield should correspond to the sign of the daily change in the comparable horizon

OIS rate. I record the proportion of positive and negative daily changes in OIS rates that are

52I use the sign of daily changes in OIS rates because their horizon corresponds exactly to that of the nominal
government bond yields I use. Although it may seem somewhat tautological to compare an OIS-augmented
GADTSM to OIS rates, previous results indicate that this may not be the case. In table 3, the survey-augmented
model does not provide the best fit for the survey-expectations which are used as an input to its estimation.
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Table 5: Proportion of Daily Changes in OIS Rates Matched in Sign by the Daily Changes in
In-Sample GADTSM Risk-Neutral Yields

Sample: January 2002 to December 2015
Maturity

Model 3-Months 6-Months 1-Year 2-Years

Proportion of Positive Daily Changes Matched
OLS/ML 84.33% 92.72% 94.44% 93.41%
Bias-Corrected 84.33% 92.72% 94.44% 93.12%
Survey 82.84% 91.75% 93.46% 96.85%
4-OIS 84.34% 94.17% 95.75% 97.99%
3-OIS 82.84% 90.78% 92.81% 95.70%

Proportion of Negative Daily Changes Matched
OLS/ML 87.21% 91.85% 94.63% 91.86%
Bias-Corrected 87.21% 91.85% 94.03% 91.86%
Survey 87.79% 92.70% 95.82% 98.43%
4-OIS 89.53% 93.99% 96.42% 98.69%
3-OIS 86.05% 90.56% 93.73% 98.16%

Note: Proportion of daily changes in 3, 6, 12 and 24-month OIS rates (in excess of one
standard deviation of their daily change in absolute value) that are matched in sign by the
daily changed in the corresponding maturity GADTSM risk-neutral yield. All proportions
are expressed as a percentage to two decimal places. Four GADTSMs are compared: (i)
the unaugmented model estimated by OLS and maximum likelihood (OLS/ML); (ii) the
bias-corrected model (Bias-Corrected); (iii) the survey-augmented model (Survey); and (iv)
the 4-OIS-augmented model (4-OIS). The models are estimated with three pricing factors,
using daily data from January 2002 to December 2015.

matched in sign by the change in the corresponding-horizon risk-neutral yields. To focus on

significant changes in OIS rates, I omit days on which OIS rates changed by less, in absolute

value, than one standard deviation of the daily changes in the OIS rate over the whole sample.

The results are presented in table 5.

The results indicate that the 4-OIS-augmented model unambiguously provides the best

qualitative match for the sign of daily changes in 3, 6, 12 and 24-month OIS rates for both

positive and negative changes. For example, the 4-OIS-augmented model is the only to match

over 95% of positive daily changes in 1-year OIS rates. Moreover, at the 2-year horizon, the

sign of daily changes in the risk-neutral yield from the 4-OIS-augmented model matches 97.99%

(98.69%) of positive (negative) OIS rate, almost 5% (7%) more than the OLS/ML and bias-

corrected models match.

Overall, the results in table 5 are consistent with the claim that the 4-OIS-augmented model

best reflects the daily frequency evolution of short-term interest rate expectations.

6.3 Explaining the Benefits of OIS-Augmentation

The preceding discussion highlights that, for the OIS-augmented models provide estimates of

expected future short-term interest rates that are superior to the OLS/ML, bias-corrected and

survey-augmented models. Moreover, within the class of OIS-augmented models considered,
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the 4-OIS-augmented model, on balance, outperforms the 2 and 3-OIS-augmented models.

Figure 7 highlights that there are differences between the risk-neutral yields from OIS-

augmented models and the OLS/ML and bias-corrected models for the whole 2002-15 sample

period. In particular, since 2009, the risk-neutral yields from the models offer distinctly different

qualitative and quantitative predictions for estimated interest rate expectations.

To understand the economic reasons behind these differences, it is informative to draw on

the canonical description of the first three principal components of bond yields as the level,

slope and curvature of the yield curve respectively together with the model-implied loadings

on these factors.53 Figure 8 plots these loadings for both the calculation of fitted yields Bn ≡
− 1
nBn

(
δ1,Φ

Q;Bn−1
)

(top row) and the risk-neutral yields B̃n ≡ − 1
nBn (δ1,Φ;Bn−1) (bottom

row) for the 3-month to 10-year maturities. To refine discussion, loadings are presented for the

two most inferior models — OLS/ML and bias-corrected — and the most superior — 4-OIS-

augmented models. These loadings illustrate the extent to which the fitted and risk-neutral

yields react to a one unit shock to a pricing factor at a given maturity, keeping all other pricing

factors constant.

Unsurprisingly, the fitted yield loadings from the OLS/ML, bias-corrected and 4-OIS-augmented

models are almost identical for all maturities. This reinforces the similarities between fitted

yields for different GADTSMs. The benefits of OIS-augmentation arise from the separate iden-

tification of interest rate expectations from term premia, rather than the fitting of actual yields.

However, the risk-neutral yield loadings from the models differ at all horizons. These differ-

ences help to explain why the 4-OIS-augmented model is superior as a measure of interest rate

expectations, and provide economic reasons for the qualitative and quantitative differences in

risk-neutral yields from 2009 onwards.

From late-2011 to 2013, the risk-neutral yields from the OLS/ML and bias-corrected models

rise to a peak during 2012, falling back below zero for a short period from late-2013 to early-

2014. The risk-neutral yields from the OIS-augmented models do not exhibit such a significant

spike during 2012. This period was characterised by two notable phenomena. First, the target

federal funds rate was at its zero lower bound. Having been set at this level in December

2008, the FOMC were signalling that it would be kept at this rate into the future through

forward guidance. Second, the Eurozone sovereign debt crisis elevated Eurozone government

bond yields. This was associated with a reduction in yields on, comparatively safe, longer-

term US government bonds.54 During the 2011-13 period therefore, the US yield curve was

characterised by a reduction in its slope, with no change in its level.

Panel E of figure 8 illustrates that an decrease in the slope of the yield curve places upward

pressure on estimated risk-neutral yields at all maturities in the OLS/ML, bias-corrected and

4-OIS-augmented models. That is, decreases in the yield curve slope, for a given level and

53Importantly, because the estimated pricing factors from the three-factor OIS-augmented models almost ex-
actly correspond with the estimated principal components (see figure 4), this economic intuition is valid for these
models.

54Formally, the sovereign debt crisis began in 2008, as longer-term interest rates in affected countries began
to increase. Nevertheless, longer-term Eurozone interest rates peaked in 2011/12 (Corsetti, Kuester, Meier, and
Müller, 2013, 2014).
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Figure 8: Fitted and Risk-Neutral Yield Factor Loadings
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Note: I plot the estimated yield loadings Bn for the fitted and risk-neutral yields, for each the three pricing
factors, from the OLS/ML, bias corrected and 4-OIS-augmented models estimated with three factors from

January 2002 to December 2015. These coefficients can be interpreted as the ceteris paribus response of the
fitted and risk-neutral bond yields at a given maturity to a contemporaneous shock to the respective pricing
factor. The horizontal axis labels denote the maturity, in months. The three models are denoted by: (i) the

unaugmented model estimated by OLS and maximum likelihood (OLS/ML); (ii) the bias-corrected model (BC);
and (iii) the 4-OIS-augmented model (4-OIS).

curvature, tend to be associated with diminished term premia. However, the risk-neutral yields

from the 4-OIS-augmented model react less strongly to a change in the yield curve slope. This

is most visible at longer-horizons, where the difference in risk-neutral yield loadings for the

4-OIS-augmented and bias-corrected models widen considerably. This helps to explain why the

risk-neutral yields from the 4-OIS-augmented do not rise to a peak in mid-2012, while those

from the OLS/ML and bias-correct models do. The 4-OIS-augmented model does not exhibit

the same peak, because the inclusion of OIS rates in the estimation alters the loading on that

pricing factor. This constellation of factor loadings helps to attain risk-neutral yields that align

more closely with survey and market-implied expectations of future short-term interest rates

during the zero lower bound period with the 4-OIS-augmented model.
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Figure 9: Standardised 10-Year Term Premia and Merrill Lynch Option Volatility Estimate
(MOVE) Index)
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Note: I plot the standardised one-month Merrill Lynch Option Volatility Estimate (MOVE) index against the
standardarised estimates of term premia from (i) the unaugmented model estimated by OLS and maximum
likelihood (OLS/ML), and (ii) the 4-OIS-augmented model (4-OIS). The models are estimated with three

factors from January 2002 to December 2015.

6.4 Model-Implied Term Premia

Alongside estimates of expectations of future short-term interest rates, GADTSMs provide

estimates for the daily evolution of term premia. Although there is no direct metric against

which to compare estimated term premia, Adrian et al. (2013) compare a standardised version

of their estimated daily ten-year term premium to a standardised version of the one-month

Merrill Lynch Option Volatility Estimate (MOVE) index. This latter index is a measure of

implied volatility from option contracts written on US Treasuring bonds.55 Thus, variation in

MOVE reflects changes in the risk of holding US Treasuries.

Like Adrian et al. (2013), in figure 9 I plot the standardised estimates of the 10-year term

premium from the OLS/ML and 4-OIS-augmented models against the standardised one-month

MOVE index. The time series exhibit a strong positive correlation. The correlation coefficient

between the standardised 10-year term premium estimate from the 4-OIS-augmented model

and the standardised MOVE index is 0.60, marginally higher than the corresponding statistic

of 0.58 for the OLS/ML model. This demonstrates that the estimated term premia from the

4-OIS-augmented model do reflect the risk of holding Treasury bonds.

55Formally, the series used here (and in Adrian et al. (2013)) is defined as a yield curve weighted index of the
normalised implied volatility on 1-month Treasury options. It is the weighted average of volatilities on 2, 5, 10
and 30-year bond yields.
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7 Conclusion

Financial market participants and policymakers closely monitor the evolution of interest rate

expectations using a wide range of financial market instruments. In this paper, I investigate the

informational content in OIS rates for this purpose and document how OIS rates can be used

to improve estimates of nominal interest rate expectations attained from the term structure of

nominal government bond yields.

I report that OIS rates provide an accurate measure of investors’ future interest rate ex-

pectations. Drawing on Lloyd (2016a), I find that 3-24-month OIS rates contain small and

statistically insignificant average excess returns. I then present an OIS-augmented GADTSM

for estimating the daily frequency evolution of interest rate expectations that explicitly accounts

for the geometric payoff structure in OIS contracts. Most existing arbitrage-free GADTSMs use

information on the term structure of nominal government bond yields to identify both expecta-

tions of the future path of short-term interest rates and term premia. Numerous authors have

drawn attention to an informational insufficiency in the estimation of these models. Kim and

Orphanides (2012) propose survey-augmented GADTSMs as a solution to this problem. How-

ever, survey forecasts of future interest rates are only available at a low frequency (quarterly

or monthly, at best) and reflect investors’ expectations of future short-term interest rates for

a window of time in the future (e.g. one, two, three or four quarters ahead). OIS rates, on

the other hand, are available at a daily frequency and have a horizon that align exactly with

those of the zero-coupon nominal government bonds used in the estimation of GADTSMs. The

term structure of OIS rates can therefore be readily augmented to a GADTSM for nominal

government bond yields. I show that augmenting the GADTSM with OIS rates provides addi-

tional information, specifically related to future short-term interest rate expectations, that can

help better identify the evolution of these expectations. Using OIS rates in an arbitrage-free

GADTSM enables the estimation of future short-term interest rate expectations for the whole

term structure — from 3 months to 10 years — in a manner that is consistent along the cross-

section. Estimates of interest rate expectations from OIS-augmented GADTSMs are superior to

those from existing GADTSMs. In particular, short and long-horizon in-sample OIS-augmented

risk-neutral yields accurately depict quantitative patterns in federal funds futures rates and sur-

vey expectations. These time series also match qualitative daily patterns exhibited by financial

market instruments. This implies that OIS-augmented GADTSMs are well suited for daily fre-

quency policy analysis. Thus, OIS-augmented GADTSMs provide reliable and policy-relevant

estimates of interest rate expectations along the whole term structure.

Additionally, this paper highlights the need to test the performance of GADTSMs in a range

of dimensions — for example accuracy of fitted yields, risk-neutral yields and term premia —

before applying them to analysis of monetary policy. This paper proposes a battery of such

tests for future research.

The contribution of this paper extends beyond the GADTSM-literature. For example, the

OIS-augmented GADTSM can be applied to better understand the transmission of monetary

policy. In related work, I use estimates of interest rate expectations from the OIS-augmented
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model to assess the effect of US unconventional monetary policy — large-scale asset purchases

and forward guidance — on longer-term interest rates (Lloyd, 2016b). I compare the implica-

tions from the OIS-augmented model to the bias-corrected and survey-augmented models, and

demonstrate that the use of more accurate estimates of interest rate expectations (from the

OIS-augmented model) can have dramatic implications for resulting conclusions, overturning

existing results. In Lloyd (2016b), I find that US longer-term interest rates did fall on US

large-scale asset purchase and forward guidance announcement days, with falls in interest rate

expectations, not term premia, explaining the majority of this.

To conclude, OIS rates accurately reflect investors’ future short-term interest rate expecta-

tions, providing useful information for improved identification of interest rate expectations in

arbitrage-free GADTSMs.
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Appendix

A Data Sources

The data in section 2 was from the following sources:

Table 6: Data Sources - Average Excess Return Regressions - Section 2

Data Series Description and Source

US OIS Rates Bloomberg, with codes: USSOA 1 month; USSOB 2 months; ... ; USSOK 11
months; USSO1 1 year; USSO1C 15 months; USSO1F 18 months; USSO1I
21 months; USSO2 2 years; and USSO3 3 years.

US Effective Fed-
eral Funds Rate

Federal Reserve Statistical Release H.15: www.federalreserve.gov/

releases/h15/data.htm.

US Survey Fore-
casts of the
3-Month T-Bill
Rate

Survey of Professional Forecasters, available from the Fed-
eral Reserve Bank of Philadelphia website here: www.

philadelphiafed.org/research-and-data/real-time-center/

survey-of-professional-forecasters/data-files/TBILL/.

The survey deadline dates are available here: www.

philadelphiafed.org/research-and-data/real-time-center/

survey-of-professional-forecasters/spf-release-dates.txt.

The data use for the GADTSM was from the following sources:

Table 7: Data Sources - GADTSM - Section 6

Data Series Description and Source

US Treasury Bill
Rates

Federal Reserve Statistical Release H.15: www.federalreserve.gov/

releases/h15/data.htm.

US Zero-Coupon
Treasury Yields

Gürkaynak, Sack, and Wright (2007a), the updated data from which
is available here: www.federalreserve.gov/pubs/feds/2006/200628/
200628abs.html.

US Federal Funds
Futures Rates

Bloomberg with codes: FF2, which settles based on the 1st full calendar
month in the future; FF3, which settles based on the 2nd full calendar
month in the future; ...; FF12, which settles based on the 11th calendar
month in the future. And www.quandl.com/data/OFDP/FUTURE_FFX,
where X should be replaced by the horizon of the contract in months.

US OIS Rates Bloomberg. See table 6 for detailed source information.

US Survey Fore-
casts of the
3-Month T-Bill
Rate

See table 6 above.

Merrill Lynch Op-
tion Volatility Esti-
mate (MOVE)

Bloomberg, with the code MOVE Index. This is a yield curve weighted
index of the normalised implied volatility on one month Treasury options.
It is a weighted average of volatilities on the current US 2, 5, 10 and 30
year government notes.
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B Approximated Survey Forecasts

B.1 Geometric Weighting Scheme

In this section, I present the formal details underlying the survey forecast approximation I

construct for figure 1 using data from the Survey of Professional Forecasters at the Federal

Reserve Bank of Philadelphia. The survey is published every quarter and reports the mean

forecasters’ expectations of the average 3-month T-Bill rate over a specified time period in: the

current quarter i
3m,sur
t|t ; and the first i

3m,sur
t+1|t , second i

3m,sur
t+2|t , third i

3m,sur
t+3|t and fourth i

3m,sur
t+4|t

quarters subsequent to the current one, where t denotes the current quarter. All quantities are

plotted on the survey submission deadline dates, which lie approximately halfway through each

quarter.

To construct a geometric approximation for the average expectation of the 3-month T-Bill

rate over the 3-months following the deadline date, I construct an equally weighted geometric

average of the expectation of the 3-month rate for the current and the subsequent quarter. An

equal weighting is made possible because the survey deadline date lies approximately halfway

through the ‘current’ quarter. I use a geometric average to replicate the floating leg of an

OIS contract, which equation (1) shows to have a geometric structure. This facilitates direct

comparison of the survey and OIS-implied expectations.

To achieve this, I first use the survey expectation for the average 3-month T-Bill rate over

the current quarter i
3m,sur
t|t and the realised average of the 3-month T-Bill rate for the first-half

of the quarter prior to the deadline date i
3m,real
t to approximate the survey expectations for the

average 3-month T-Bill rate for the remainder of the current quarter, denoted i
3m,sur
t+|t . This is

calculated from the following expression:

i
3m,sur
t|t =

1

2
i
3m,real
t +

1

2
i
3m,sur
t+|t

Then, to calculate the average survey expectation of the 3-month T-Bill rate over the three

months from the deadline date t, i3m,surt|t , I use the approximation:

i3m,surt|t =

(1 +
i
3m,sur
t+|t

100

) 1
2

×

(
1 +

i
3m,sur
t+1|t

100

) 1
2

− 1

× 100

where i3m,surt|t , i
3m,sur
t+|t and i

3m,sur
t+1|t are all reported in percentage points.

The average expectation of the 3-month T-Bill rate over the six-months following the dead-

line date t, i6m,surt|t , is approximated using a similar geometric weighted average procedure: the

expectation of the 3-month rate for the remainder of the current quarter and second quarter

ahead are both given weights of 1/4; and the first quarter ahead expectation has weight 1/2.
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Mathematically, this is written as:

i6m,surt|t =

(1 +
i
3m,sur
t+|t

100

) 1
4

×

(
1 +

i
3m,sur
t+1|t

100

) 1
2

×

(
1 +

i
3m,sur
t+2|t

100

) 1
4

− 1

× 100

The average expectation of the 3-month T-Bill rate over the year following the submission date

t, i1y,surt|t , is approximated by a geometric weighted average of the remainder of the current

quarter and first, second, third and fourth quarter ahead expectations, of the form:

i1y,surt|t =

(1 +
i
3m,sur
t+|t

100

) 1
8

×

(
1 +

i
3m,sur
t+1|t

100

) 1
4

×

(
1 +

i
3m,sur
t+2|t

100

) 1
4

×

(
1 +

i
3m,sur
t+3|t

100

) 1
4

×

(
1 +

i
3m,sur
t+4|t

100

) 1
8

− 1

× 100

B.2 Arithmetic Weighting Scheme

In this section, I present the formal details underlying the survey forecast approximation I

construct for risk-neutral yield comparison in section 6.2.2 using the same data from the Survey

of Professional Forecasters at the Federal Reserve Bank of Philadelphia. All RMSE calculations

are made by comparing risk-neutral yields to the approximated survey expectations on the

survey submission deadline dates.

To construct an arithmetic approximation for the average expectation of the 3-month T-Bill

rate over the 3-months following the deadline date, I construct a weighted arithmetic average

of the expectation of the 3-month rate for the current and subsequent quarters. The weight-

ing is made possible because the survey deadline date lies approximately halfway through the

‘current’ quarter. This facilitates direct comparison of the survey and risk-neutral yield-implied

expectations. Mathematically, this average survey expectation of the 3-month T-Bill rate over

the three months from the deadline date t, ĩ3m,surt|t , is approximated by:

ĩ3m,surt|t =
1

2
i
3m,sur
t+|t +

1

2
i
3m,sur
t+1|t

The arithmetic average expectation of the 3-month T-Bill rate over the 6-months and 12-months

following the deadline date, ĩ6m,surt|t and ĩ1y,surt|t , are respectively approximated by:

ĩ6m,surt|t =
1

4
i
3m,sur
t+|t +

1

2
i
3m,sur
t+1|t +

1

4
i
3m,sur
t+2|t

ĩ1y,surt|t =
1

8
i
3m,sur
t+|t +

1

4
i
3m,sur
t+1|t +

1

4
i
3m,sur
t+2|t +

1

4
i
3m,sur
t+3|t +

1

8
i
3m,sur
t+4|t
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C Baseline Gaussian Affine Dynamic Term Structure Model

C.1 Bond Pricing Using the Risk-Adjusted Probability Measure Q

To guarantee the existence of a risk-adjusted probability measure Q, under which the bonds

are priced, no-arbitrage is imposed (Harrison and Kreps, 1979). The risk-adjusted probability

measure Q is defined such that the price Vt of any asset that does not pay any dividends at

time t + 1 satisfies Vt = EQ
t [exp(−it)Vt+1], where the expectation EQ

t is taken under the Q
probability measure. Thus, with no-arbitrage, the price of an n-day zero-coupon bond must

satisfy the following relation:

Pt,n = EQ
t [exp(−it)Pt+1,n−1] (20)

Using this, it is possible to show that the nominal bond price is an exponentially affine function

of the pricing factors:

Pt,n = exp (An + Bnxt) (21)

such that the corresponding continuously compounded yield yt,n is affine in the pricing factors:

yt,n = − 1

n
ln (Pt,n) = An +Bnxt (22)

where An ≡ − 1
nAn

(
δ0, δ1,µ

Q,ΦQ,Σ;An−1,Bn−1
)

and Bn ≡ − 1
nBn

(
δ1,Φ

Q;Bn−1
)
.

To attain recursive expressions for An and Bn:

An + Bnxt = lnPt,n

= lnEQ
t [exp(−it)Pt+1,n−1]

= lnEQ
t [exp (−it +An−1 + Bn−1xt+1)]

= lnEQ
t

[
exp

(
−δ0 − δ′1xt +An−1 + Bn−1

[
µQ + ΦQxt + ΣεQt+1

])]
= −

(
δ0 + δ′1xt

)
+An−1 + Bn−1

[
µQ + ΦQxt

]
+ lnEQ

t

[
exp

(
Bn−1ΣεQt+1

)]
= −

(
δ0 + δ′1xt

)
+An−1 + Bn−1

[
µQ + ΦQxt

]
+

1

2
Bn−1ΣΣ′B′n−1

=

{
−δ0 +An−1 +

1

2
Bn−1ΣΣ′B′n−1 + Bn−1µQ

}
+
{
−δ′1 + Bn−1ΦQ

}
xt

using (21) in the third line, (6) and (9) in the fourth line, and using the property of the

log-normal distribution in conjunction with the fact that εQt+1|xt ∼ N (0K , IK) to write the

expression lnEQ
t

[
exp

(
Bn−1ΣεQt+1

)]
as 1

2Bn−1ΣΣ′B′n−1 in the sixth line

By the method of undetermined coefficients, the recursive definitions for the scalar An ≡
An
(
δ0, δ1,µ

Q,ΦQ,Σ;An−1,Bn−1
)

and the 1 × K vector Bn ≡ Bn
(
δ1,Φ

Q;Bn−1
)

follow from
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the final line:

An = −δ0 +An−1 +
1

2
Bn−1ΣΣ′B′n−1 + Bn−1µQ (23)

Bn = −δ′1 + Bn−1ΦQ (24)

with initial values A0 = 0 and B0 = 0′K , where 0K is a K × 1 vector of zeros.

C.2 Bond Pricing Using the Pricing Kernel and the Actual Probability Mea-

sure P

Under the actual P probability measure, the bond price is given by equation (11):

Pt,n = Et [Mt+1Pt+1,n−1]

where this expectation is taken under the P measure.

Using this, it is also possible to show that the nominal bond price is an exponentially affine

function of the pricing factors, as in equation (21). To attain recursive expressions for An and

Bn:

An + Bnxt = lnPt,n

= lnEt [Mt+1Pt+1,n−1]

= lnEt
[
exp

(
−it −

1

2
λ′tλt − λ′tεt+1 +An−1 + Bn−1xt+1

)]

= lnEt

exp

 −δ0 − δ′1xt −
1

2
(λ0 + Λ1xt)

′ (λ0 + Λ1xt)

− (λ0 + Λ1xt)
′ εt+1 +An−1 + Bn−1 (µ+ Φxt + Σεt+1)


= −δ0 − δ′1xt +An−1 − Bn−1Σ (λ0 + Λ1xt)

+
1

2
Bn−1ΣΣ′B′n−1 + Bn−1 (µ+ Φxt)

using (7) and (13) in the third line, and (5), (6) and (8) in the fourth line.

By the method of undetermined coefficients, the recursive definitions for the scalar An and

the 1×K vector Bn follow from the final line:

An = −δ0 +An−1 +
1

2
Bn−1ΣΣ′B′n−1 + Bn−1 (µ−Σλ0) (25)

Bn = −δ′1 + Bn−1 (Φ−ΣΛ1) (26)

with initial values A0 = 0 and B0 = 0′K , where 0′K is a K × 1 vector of zeros.

Comparing (23) and (24) with (25) and (26) yields the relationship between P and Q pa-

rameters:

µQ = µ−Σλ0, ΦQ = Φ−ΣΛ1.
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C.3 Risk-Neutral Yields

The risk-neutral yield on an n-day bond reflects the yield that would prevail if investors were

risk-neutral. That is, the risk-neutral yield corresponds to that which would arise under the

actual probability measure P.

The risk-neutral bond price P̃t,n is of the form:

P̃t,n = Et
[
exp(−it)P̃t+1,n−1

]
(27)

and can be shown to be an exponentially affine function of the pricing factors:

P̃t,n = exp (An + Bnxt) (28)

where An ≡ An (δ0, δ1,µ,Φ,Σ;An−1,Bn−1) and Bn ≡ Bn (δ1,Φ;Bn−1). Thus, the risk-neutral

yield is affine in the pricing factors:

ỹt,n = Ãn + B̃nxt (29)

where Ãn = − 1
nAn (δ0, δ1,µ,Φ,Σ;An−1,Bn−1) and B̃n = − 1

nBn (δ1,Φ;Bn−1).
To attain the recursive expressions for Ãn and B̃n, note that from equation (20):

ỹt,n = − 1

n
lnEt [exp {−it +An−1 + Bn−1xt+1}]

Ãn + B̃nxt = − 1

n
lnEt

[
exp

{
−
(
δ0 + δ′1xt

)
+An−1 + Bn−1 [µ+ Φxt + Σεt+1]

}]
= − 1

n

[{
−δ0 +An−1 +

1

2
Bn−1ΣΣ′B′n−1 + Bn−1µ

}
+
{
−δ′1 + Bn−1Φ

}
xt

]
using (27) and (28) in the first line, and (6) and (5) in the second line. The expectation is taken

under the actual probability measure P. By the method of undetermined coefficients, it follows

that:

ỹt,n = Ãn + B̃nxt

where Ãn = − 1
nAn (δ0, δ1,µ,Φ,Σ;An−1,Bn−1) and B̃n = − 1

nBn (δ1,Φ;Bn−1).
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D Overnight Indexed Swap Augmentation

To calculate the loadings for the OIS observation equation, first note that the annualised floating

leg of a j-day OIS contract, with starting day t+ 1, is given by:

ifltt,t+j =

([
j∏
i=1

(1 + γt+iit+i)

]
− 1

)
× Tyr

j

where γt+i is an accrual factor, which is set to 1/Tyr for all time periods, and Tyr = 252 is

the number of trading days in a year.56 it is the one-period short-term floating interest rate

(equation (6)) used as the reference rate for the swap — the effective federal funds futures rate.

Therefore, under the expectations hypothesis, the OIS rate ioist,t+n will be:

ioist,t+j =

(
Et

[
j∏
i=1

(1 + γt+iit+i)

]
− 1

)
× Tyr

j
(30)

Since this refers to the expected path for the nominal short-term interest rate, and not just the

risk-neutral path, I set Σ = 0K in what follows.

For a one period OIS contract, j = 1:

ioist,t+1 = Et
[
γ
(
δ0 + δ′1xt+1

)]
× Tyr

= Et
[
γ
(
δ0 + δ′1 [µ+ Φxt]

)]
× Tyr

=
(
δ0 + δ′1µ+ δ′1Φxt

)
For a two period OIS contract, j = 2, the expectations hypothesis requires that:

ioist,t+2 =
(
Et
[(

1 + γ
(
δ0 + δ′1µ+ δ′1Φxt

)) (
1 + γ

(
δ0 + δ′1µ+ δ′1Φxt+1

))]
− 1
)
× (Tyr/2)

=
((

1 + γ
(
δ0 + δ′1µ+ δ′1Φxt

)) (
1 + γ

(
δ0 + δ′1µ+ δ′1Φ [µ+ Φxt]

))
− 1
)
× (Tyr/2)

The expectations operator is removed in line 2 of the above, since everything in this final line

is known to an individual at time t. Rearranging this:

1 +
2

Tyr
ioist,t+2 =

(
1 + γ

(
δ0 + δ′1µ+ δ′1Φxt

)) (
1 + γ

(
δ0 + δ′1µ+ δ′1Φµ+ δ′1Φ

2xt
))

56For the term structure model, the accrual and annualisation factors use the convention that there are 252
business trading days in a year, as opposed to the market quoting convention of 360 days used in section 2. Given
that daily yield data is only available on 252 days per year, I adopt this convention to ensure that the horizon
for each OIS rate corresponds to their actual maturity date and that of a corresponding maturity zero-coupon
bond. This convention is also adopted for daily frequency term structure estimation by, amongst others, Bauer
and Rudebusch (2014).

44



and, by using ln(1 + x) ≈ x for small |x|, then:

2

Tyr
ioist,t+2 ≈ γ

(
2δ0 + 2δ′1µ+ δ′1Φµ+ δ′1Φxt + δ′1Φ

2xt
)

ioist,t+2 ≈ 1

2

(
2δ0 + 2δ′1µ+ δ′1Φµ+ δ′1Φxt + δ′1Φ

2xt
)

For a three period OIS contract, j = 3, the same steps as above yield the following expression:

ioist,t+3 ≈
1

3

(
3δ0 + 3δ′1µ+ 2δ′1Φµ+ δ′1Φ

2µ+ δ′1Φxt + δ′1Φ
2xt + δ′1Φ

3xt
)

The continued iteration can be summarised by the following expressions:

ioist,t+j = Aoisj +Bois
j xt (31)

where Aoisj ≡ 1
jA

ois
j

(
δ0, δ1,µ,Φ,Σ;Aoisj−1,Boisj−1

)
and Bois

j =
1

j
Boisj

(
δ1,Φ;Boisj−1

)
are recursively

defined as:

Aoisj = δ0 + δ′1µ+Aoisj−1 + Boisj−1µ

Boisj = δ′1Φ + Boisj−1Φ

where Aois0 = 0 and Bois0 = 0′K , where 0K is a K × 1 vector of zeros.
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E Estimation Procedure

To identify the unaugmented model described in section 3, I use the normalisation scheme

proposed by Joslin et al. (2011). The Joslin et al. (2011) normalisation fosters faster convergence

to the global optimum of the model’s likelihood function than other identification schemes

for two reasons. First, this normalisation allows for the (near) separation of the P and Q
probability measure likelihood functions, the product of which comprises the overall model

likelihood function. Moreover, the Joslin et al. (2011) normalisation reduces the dimensionality

of the parameter space. In the baseline, unaugmented model, the parameters governing bond

pricing are:

Θ =
{
δ0, δ1,µ

Q,ΦQ,Σ
}

The Joslin et al. (2011) normalisation scheme uniquely maps these parameters to a smaller set:{
iQ∞,λ

Q,Σ
}

where: (i) iQ∞ is the risk-neutral expectation of the long-run short-term nominal interest rate;

(ii) λQ is a K×1 of the eigenvalues of ΦQ; and (iii) Σ is a lower triangular matrix with positive

diagonal entries.

For all the term structure models estimated in this paper I use the convention that there

are 252 business days in a year, corresponding to the number of days for which bond yield

data exists per year.57 To ensure that the horizon for each bond corresponds to their actual

maturity date, I set the daily horizons of the 3, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 84 and 120

month yields to n = 63, 126, 252, 378, 504, 630, 756, 882, 1008, 1134, 1260, 1764, 2520 days

(N = 13). Similarly, the 3, 6, 12 and 24 month OIS rates have the following horizon in days:

j = 63, 126, 252, 504 (J = 4).

E.1 OLS/ML Estimation of the Baseline, Unaugmented GADTSM

Assuming that K portfolios of bonds are priced without error, then the Joslin et al. (2011)

normalisation permits the complete separation of the P and Q likelihood functions. In this

paper, as in many others, I use the first K principal components of the observed bond yields as

the set of K portfolios that are priced perfectly (see, for example: Joslin et al., 2011). Defining

these portfolios Pt ≡ Wyt = Wyobst ≡ Pobst , where W is the principal component weighting

matrix and yobst is the vector of observed yields, then Joslin et al. (2011) show that the likelihood

function for the unaugmented model laid out in section 3.1 is:

L
(
yobst |yobst−1; Θ

)
= L

(
yobst |Pt;λQ, iQ∞,Σ, σu

)
× L (Pt|Pt−1;µ,Φ,Σ)

where σu is the standard deviation of the measurement error of the N observed yields.

This normalisation admits a two-stage estimation process. First, the parameters {µ,Φ} are

57This convention is also adopted for daily frequency term structure estimation by, amongst others, Bauer and
Rudebusch (2014).
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directly estimable by running OLS on the VAR in equation (5), where xt ≡ Pt. Moreover, this

provides initial values for the maximum likelihood estimation of the lower triangular elements

of the matrix Σ. Second, taking
{
µ̂, Φ̂

}
as given, the parameters

{
iQ∞,λ

Q,Σ, σu
}

can be

estimated by maximum likelihood.

E.2 Bias-Corrected Estimation

To estimate the bias-corrected decomposition, I rely entirely on the methodology of Bauer et al.

(2012, Section 4). The MATLAB code for this is available here: faculty.chicagobooth.edu/

jing.wu/research/zip/brw_table1.zip.

E.3 Survey-Augmentation

To augment the model with survey expectations of future interest rates, I employ Kalman filter-

based maximum likelihood estimation. This estimation methodology, using survey expectations,

draws most directly on Guimarães (2014).

Like Guimarães (2014), I use survey expectations from the Survey of Professional Forecasters

at the Federal Reserve Bank of Philadelphia. I use forecasts for the 3 month T-Bill 1, 2, 3 and

4 quarters ahead, available at a quarterly frequency. I augment the model with the survey

expectations on the survey submission deadline day.58

The survey-augmented Kalman filter has a similar form to the OIS-augmented setup pre-

sented in section 3. The transition equation of the Kalman filter is equation (5), the vector

autoregression for the latent pricing factors under the actual P probability measure.

On days when the survey forecasts are not observed, the observation equation is given by

equation (17). As with the OIS-augmented model, I maintain a homoskedastic form for the

yield measurement error.

On days when the S survey forecasts, s = s1, s2, ..., sS , are observed, the observation equation

is: [
yt

isurt

]
=

[
A

Asur

]
+

[
B

Bsur

]
xt +

[
ΣY

ΣS

]
usurt (32)

where, in addition to the definitions of A, B and ΣY above, isurt =
[
isurt,s1 , ..., i

sur
t,sS

]′
, Asur =[

Asurs1 , ..., A
sur
sS

]′
, Bsur =

[
Bsur
s1
′, ..., Bsur

sS
′]′ and usurt ∼ N (0N+S , IN+S) denotes the yield and

survey measurement error, where 0N+S is an N+S-vector zeros and IN+S is an (N+S)×(N+S)

identity matrix. As with the yield measurement error, I impose a homoskedastic form for the

survey measurement error, such that ΣS is a S × S diagonal matrix with common diagonal

element σs, the standard deviation of the survey measurement error. Appendix C of Guimarães

(2014) presents the functional forms for Asurs and Bsur
s , which account for the arithmetic nature

of survey expectations.

As with the OIS-augmented model, I estimate the survey-augmented model by using the

OLS/ML parameter estimates as initial values for the Kalman filter.

58For survey submission dates that are not business days, I augment the model with survey data on the
preceding business day.
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E.4 OIS-Augmentation of the GADTSM and Kalman Filtering

When the Kalman filter is used, the assumption that K portfolios of yields are observed without

error is no longer made. Instead, all yields (and portfolios thereof) can be observed with error.

Consequently, the exact separation of the likelihood function described in section E.1 is no

longer applicable. However, the parameter estimates attained from OLS/ML estimation of the

unaugmented model do provide initial values for the Kalman filter-based optimisation routine.59

Doing so, ensures that computational time is reasonably fast.

59Guimarães (2014) follows similar steps to estimate a survey-augmented GADTSM using the Joslin et al.
(2011) normalisation scheme.
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F Term Structure Results

In this section, I present additional results from my estimation of the GADTSMs.

F.1 Additional Results for the Three-Factor Specification

Model-Implied Fitted Yields Table 8 presents the root mean square error (RMSE) for the

fitted yields from each of the term structure models. The RMSE is presented for each maturity,

and the average over all maturities, for the sample period: January 2002 to December 2015.

The fit, compared to the actual yield, is broadly similar across all six models. Specifically, the

average RMSE for each of the models at all thirteen maturities differ by no more then 0.3 basis

points. Thus, all models fit actual bond yields similarly well.

Table 8: GADTSM Fit: Root Mean Square Error (RMSE) of the Fitted Yields vis-à-vis the
Actual Yields

Sample: January 2002 to December 2015

Maturity OLS/ML BC Survey 4-OIS 3-OIS 2-OIS

3-Months 0.0995 0.0999 0.1053 0.1093 0.1032 0.1017

6-Months 0.0531 0.0529 0.0544 0.0544 0.0560 0.0539

1-Year 0.0712 0.0714 0.0782 0.0735 0.0745 0.0773

18-Months 0.0579 0.0576 0.0610 0.0619 0.0599 0.0609

2-Years 0.0415 0.0409 0.0416 0.0450 0.0421 0.0417

30-Months 0.0246 0.0240 0.0247 0.0276 0.0254 0.0245

3-Years 0.0161 0.0159 0.0193 0.0186 0.0181 0.0183

42-Months 0.0226 0.0226 0.0266 0.0242 0.0241 0.0250

4-Years 0.0321 0.0319 0.0352 0.0337 0.0327 0.0332

54-Months 0.0390 0.0386 0.0410 0.0410 0.0389 0.0388

5-Years 0.0424 0.0418 0.0434 0.0452 0.0420 0.0411

7-Years 0.0280 0.0271 0.0282 0.0355 0.0320 0.0275

10-Years 0.0662 0.0653 0.0646 0.0594 0.0612 0.0572

Average 0.0457 0.0454 0.0480 0.0484 0.0469 0.0463

Note: RMSE of the fitted yields from each of the six three-factor GADTSMs, computed by

comparing the model-implied fitted yield to the actual yield on each day. All figures are expressed

in annualised percentage points. The six GADTSMs are: (i) the unaugmented model estimated

by OLS and maximum likelihood (OLS/ML); (ii) the bias-corrected model (BC); (iii) the survey-

augmented model (Survey); (iv) the 4-OIS-augmented model (4-OIS); (v) the 3-OIS-augmented

model (3-OIS); and (vi) the 2-OIS-augmented model (2-OIS).

Model-Implied Fitted OIS Rates Table 9 presents the RMSE for the fitted OIS rates

from each of the OIS-augmented term structure models. The RMSE is presented for each

maturity for the sample period: January 2002 to December 2015. The results demonstrate that

the 4-OIS-augmented model provides superior estimates of all four OIS rates, reaffirming the
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conclusion discussed with respect to figure 3. Intuitively, the 3-OIS-augmented model provides

the second best fit of all four OIS rates, while the 2-OIS-augmented model provides the most

inferior fit. Furthermore, the 3-OIS-augmented model is only marginally inferior to the 4-OIS-

augmented model at the 3, 6 and 12-month maturities, for which the former uses these OIS

rates as observables. However, at the 2-year horizon, the 4-OIS-augmented model provides a

substantial improvement in fit vis-à-vis the 3-OIS-augmented model.

Table 9: GADTSM Fit: Root Mean Square Error (RMSE) of Fitted OIS Rates vis-à-vis the
Actual OIS Rates

Sample: January 2002 to December 2015

Maturity 4-OIS 3-OIS 2-OIS

3-Months 0.1383 0.1534 0.1591

6-Months 0.0930 0.1200 0.1524

1-Year 0.0942 0.1429 0.4049

2-Year 0.1048 0.3563 1.0597

Note: RMSE of the fitted OIS rates from each of the three

OIS-augmented GADTSMs, computed by comparing the model-

implied fitted OIS rate to the actual OIS rate on each day. All

figures are expressed in annualised percentage points. The three

GADTSMs are: (i) the 4-OIS-augmented model (4-OIS); (ii) the

3-OIS-augmented model (3-OIS); and (iii) the 2-OIS-augmented

model (2-OIS).

Estimated Pricing Factors and Principal Components Table 10 presents summary

statistics for the estimated principal components of the actual bond yields and the estimated

pricing factors from the 4, 3 and 2-OIS-augmented models for the sample period: January 2002

to December 2015. The results demonstrate that the principal components and estimated pric-

ing factors evolve similarly, implying that OIS rates do not include any additional information,

over and above that in bond yields, of value to the fitting of actual yields. In particular, the

summary statistics of the estimated principal components and the estimated pricing factors

from the 4-OIS-augmented models are similar.

Moreover, table 10 further demonstrates that the inclusion of different maturities of OIS

rate in the term structure model does not appreciably alter estimates of actual bond yields.

The summary statistics of the estimated pricing factors from the 4, 3 and 2-OIS-augmented

models are all similar. Augmentation of GADTSMs with OIS rates only influences estimated

parameters under the actual probability measure P and thus risk-neutral yields.

F.2 Four-Factor Specification

In the light of evidence by Cochrane and Piazzesi (2005, 2008) and Duffee (2011), who argue

that more than three factors are necessary to explain the evolution of nominal Treasury yields,

I do estimate a four-factor specification of the OLS/ML, bias-corrected, survey-augmented and
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Table 10: Estimated Principal Components and Estimated Pricing Factors: Summary
Statistics

Summary
Statistics

1st Factor 2nd Factor 3rd Factor

Estimated Principal Components
Mean 0.0746 0.0341 0.0098
Variance 0.0026 0.0001 0.0000
Skewness 0.6785 0.3591 -0.3081
Kurtosis 2.1498 2.3273 2.5543

4-OIS: Estimated Pricing Factors
Mean 0.0746 0.0342 0.0099
Variance 0.0026 0.0001 0.0000
Skewness 0.6728 0.3797 -0.3176
Kurtosis 2.1401 2.3400 2.5643

3-OIS: Estimated Pricing Factors
Mean 0.0746 0.0341 0.0098
Variance 0.0026 0.0001 0.0000
Skewness 0.6778 0.3595 -0.3193
Kurtosis 2.1490 2.3295 2.5520

2-OIS: Estimated Pricing Factors
Mean 0.0746 0.0341 0.0098
Variance 0.0026 0.0001 0.0000
Skewness 0.6769 0.3559 -0.3392
Kurtosis 2.1477 2.3175 2.5260

Note: Summary statistics for the first three estimated principal
components from actual yield data and the estimated pricing fac-
tors from the 4, 3 and 2-OIS-augmented models. All statistics are
reported to four decimal places.

4-OIS-augmented GADTSMs. Although the four-factor model better fits actual bond yields for

the 2002-15 sample, I do not present these results in the main body of the paper because the

economic meaning of the pricing factors in a three-factor model is well understood (i.e., level,

slope and curvature), while the economic interpretation the fourth factor is less well understood.

I estimate the four-factor model using the same underlying daily data as the three-factor

model presented in the main body of the paper.

Fitted Yields Figure 10 demonstrates that the fitted yields from the four-factor GADTSMs

do not differ markedly from one another. Here I plot the residual of the 2-year fitted yield from

the four-factor model.

Fitted OIS Rates As with the three-factor models, the four-factor OIS-augmented models

accurately fit OIS rates. Figure 11 demonstrates this, plotting the actual and fitted 3, 6, 12

and 24-month OIS rates.
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Figure 10: Residual of the 2-Year Fitted Yield from Four-Factor GADTSMs
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Note: Residuals of the 2-year fitted yield from five monthly frequency GADTSMs: (i) the unaugmented model
estimates by OLS and maximum likelihood (OLS/ML); (ii) the bias-corrected model (Bias-Corrected); (iii) the

survey-augmented model (Survey; (iv) the 4-OIS-augmented model; and (v) the 3-OIS-augmented model
(3-OIS). The models are estimated with four pricing factors, using daily data from January 2002 to December

2014. The residual is defined as the actual yield subtracted by the model-implied fitted yield. The residuals are
presented in annualised percentage points.

Figure 11: Fitted OIS Rates from the Four-Factor OIS-Augmented Models
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Note: Fitted and actual 3, 6, 12 and 24-month OIS rates. Fitted OIS rates are from the 4, 3 and
2-OIS-augmented GADTSMs. The models are estimated with four pricing factors using daily data from

January 2002 to December 2015. All figures are in annualised percentage points.
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Pricing Factors Figure 12 plots the first four estimated principal components of the daily

frequency bond yield data, and the four estimated pricing factors from the 4-OIS-augmented

model. As with the three-factor model, the plot demonstrates that the inclusion of OIS rates

in the estimation of GADTSMs does not significantly influence the bond pricing factors, as the

quantities closely co-move.

Figure 12: First Four Estimated Principal Components of the Actual Bond Yields and
Estimated Pricing Factors from the Four-Factor 4-OIS-Augmented Model
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Note: Estimated principal components from the actual bond yield data with the following maturities: 3, 6, 12,

18, 24, 30, 36, 42, 48, 54, 60, 84 and 120 months. Estimated pricing factors from the four-factor

4-OIS-augmented model implied by the Kalman filter.

Interest Rate Expectations Figure 13 plots the 3→ 4 and 6→ 7 month ahead risk-neutral

forward yields against comparable-horizon federal funds futures rates. The figure demonstrates

that the OIS-augmented models provide the closest fit for market-based measures of interest

rate expectations for the majority for the 2002-15 sample.

F.3 Monthly Frequency GADTSMs

For robustness, I also estimate the GADTSMs at a monthly frequency. The monthly frequency

models have the same structure as described in the main body of the paper, with the time index

t now representing a month, rather than a day. To estimate the model, I use bond yields and

OIS rates from the final day of each calendar month. I estimate the monthly frequency models

using the same 13 bond yields and 4 OIS rates for the January 2002 to December 2015. The

headline conclusion is as follows: the benefits of OIS-augmentation for estimates of future short-

term interest rate expectations carry over from daily frequency estimation to lower frequencies,
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Figure 13: Estimated Risk-Neutral 1-Month Forward Yields from the Four-Factor Models and
Comparable-Horizon Federal Funds Futures (FFF) Rates
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Note: I plot estimated 3 to 4-month ahead and 6 to 7-month ahead risk-neutral forward yields from each of five
GADTSMs. The five models are: (i) the unaugmented model estimated by OLS and maximum likelihood

(OLS/ML); (ii) the bias-corrected model (Bias-Corrected); (iii) the survey-augmented model (Survey); (iv) the
4-OIS-augmented model (4-OIS); and (v) the 3-OIS-augmented model (3-OIS). The models are estimated with

four pricing factors, using daily data from January 2002 to December 2015. I compare the estimated
risk-neutral forward yields to corresponding-horizon federal funds futures (FFF) rates. All figures are in

annualised percentage points.

such as the monthly frequency.

Fitted Yields Figure 14 illustrates that the fitted yields from the monthly frequency GADTSMs

do not differ markedly (i) from one another and (ii) in comparison to the daily frequency esti-

mates presented in the main body of the paper. Here, I plot the residual of the 2-year fitted

yield from the monthly frequency GADTSMs. They serve to illustrate that the models provide

a similar fit for actual bond yields.

Fitted OIS Rates As with the daily frequency results, the monthly frequency OIS-augmented

models accurately fit OIS rates. Figure 15 demonstrates, again, that the 4-OIS-augmented

model accurately fits the 3, 6, 12 and 24-month OIS rates. Although the 4-OIS-augmented

provides a visually superior fit of all four OIS rates, the 2 and 3-OIS-augmented models do

provide estimates of OIS rates that fit actual OIS rates reasonably well.

Pricing Factors Figure 16 plots the estimated principal components of the monthly frequency

bond yield data and the estimated pricing factors from the monthly-frequency 4-OIS-augmented
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Figure 14: Residual of the 2-Year Fitted Yield from Monthly Frequency GADTSMs
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Note: Residuals of the 2-year fitted yield from four monthly frequency GADTSMs: (i) the unaugmented model
estimates by OLS and maximum likelihood (OLS/ML); (ii) the bias-corrected model (Bias-Corrected); (iii) the
4-OIS-augmented model; and (iv) the 3-OIS-augmented model (3-OIS). The models are estimated with three
pricing factors, using end of month data from January 2002 to December 2014. The residual is defined as the

actual yield subtracted by the model-implied fitted yield. The residuals are presented in annualised percentage
points.

Figure 15: Fitted OIS Rates from the Monthly Frequency OIS-Augmented Models
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Note: Fitted and actual 3, 6, 12 and 24-month OIS rates. Fitted OIS rates are from the 4, 3 and
2-OIS-augmented GADTSMs. The models are estimated with three pricing factors using end of month data

from January 2002 to December 2015. All figures are in annualised percentage points.
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Figure 16: Estimated Principal Components of the Actual Bond Yields and Estimated Pricing
Factors from the 4-OIS-Augmented Model at a Monthly Frequency
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Note: Estimated principal components from the actual bond yield data with the following maturities: 3, 6, 12,
18, 24, 30, 36, 42, 48, 54, 60, 84 and 120 months. Estimated pricing factors from the three-factor

4-OIS-augmented model implied by the Kalman filter.

model. As with the daily frequency model, the plot demonstrates that the inclusion of OIS rates

in the estimation of GADTSMs does not significantly influence the bond pricing factors. The

two quantities evolve almost identically.

Interest Rate Expectations Finally, in figure 17, I plot the 6-month and 1-year risk-neutral

yields from the monthly frequency OLS/ML, bias-corrected, 4 and 3-OIS-augmented GADTSMs

against comparable horizon survey expectations. The figure highlights that the monthly fre-

quency models provide similar estimates for the level of interest rate expectations at a given

time. The OIS-augmented models, again, visually provide the best fit of survey expectations.

56



Figure 17: Short-Term Interest Rate Expectations from the Monthly Frequency Models
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Note: I plot estimated 6-month and 1-year risk-neutral yields from each of four GADTSMs in panels A and B,
respectively. The four models are: (i) the unaugmented model estimated by OLS and maximum likelihood

(OLS/ML); (ii) the bias-corrected model (Bias-Corrected); (iii) the 4-OIS-augmented model (4-OIS); and (iv)
the 3-OIS-augmented model (3-OIS). The models are estimated with three pricing factors, using end of month

data from January 2002 to December 2015. I compare the estimated risk-neutral yields to approximated survey
expectations of future short-term interest rates over the same horizon. The construction of survey expectation

approximations is described in appendix B. All figures are in annualised percentage points.
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