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1. Summary of the Theory: Spectrum Statistics

� Basic framework: X, often the log of an asset price, is assumed to
follow an Itô semimartingale.

� A semimartingale can be decomposed into the sum of a drift, a con-

tinuous Brownian-driven part and a discontinuous, or jump, part.

{ The jump part can in turn be decomposed into a sum of small

jumps and big jumps.

{ Such a process will always generate a �nite number of big jumps.

{ But it may give rise to either a �nite or in�nite number of small

jumps.



� The model is
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� � is the jump measure of X, and its predictable compensator is the
L�evy measure �.

� The distinction between small and big jumps (") is arbitrary. What is
important is that " > 0 is �xed.



� The paper uses statistics that focus on speci�c parts of the distri-
bution of high frequency returns in order to learn something about

the di�erent components of the semimartingale that produced those

returns

{ decide which component(s) need to be included in the model (jumps,

�nite or in�nite activity, continuous component, etc.)

{ determine their relative magnitude

{ magnify speci�c components of the model if they are present, so

we can analyze their �ner characteristics (such as the degree of

activity of jumps)



� Based on power variations of the increments, suitably truncated and/or
sampled at di�erent frequencies.

� Exploit the di�erent asymptotic behavior of the variations as we vary:

{ the power p

{ the truncation level u

{ the sampling frequency �



� Varying the power

{ Powers p < 2 will emphasize the continuous component of the

underlying sampled process.

{ Powers p > 2 will conversely accentuate its jump component.

{ The power p = 2 puts them on an equal footing.
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� Truncating the large increments at a suitably selected cuto� level can
eliminate the big jumps when needed

� Early use of this device: Mancini (2001)
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� Sampling at di�erent frequencies can let us distinguish between situ-
ations where the variations:

{ converge to a �nite limit;

{ converge to zero;

{ diverge to in�nity.
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� These various limiting behaviors of the variations are indicative of
which component of the model dominates at a particular power and

in a certain range of returns (by truncation)

� So they e�ectively allow one to distinguish between all manners of null
and alternative hypotheses.



� There are n observed increments of X on [0; T ]; which are

�niX = Xi�n �X(i�1)�n;

to be contrasted with the actual (unobservable) jumps of X :
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� For any real p � 0; the basic instruments are the sum of the pthpower

of the increments of X; sampled at time interval �n; and truncated

at level un :

B(p; un;�n) =
[T=�n]X
i=1

j�niXjp 1fj�ni Xj�ung

� The entire methodology relies only on the computation of B for various
values of (p; un;�n) :

B(p,u,del)=sum((abs(dX(del)).^p).*(abs(dX(del))<=u(del)))



� T is �xed, asymptotics are all with respect to �n ! 0:

� un is the cuto� level for truncating the increments

� un ! 0 when n!1: in the form un = ��$n for some $ 2 (0; 1=2):

� $ < 1=2 to keep all the increments which contain a Brownian contri-

bution.

� There will be further restrictions on the rate at which un ! 0, ex-

pressed in the form of restrictions on the choice of $.

� If we don't want to truncate, we write B(p;1;�n):



� Sometimes we will truncate in the other direction, that is retain only
the increments larger than u :

U(p; un;�n) =
[T=�n]X
i=1

j�niXjp 1fj�ni Xj>ung:

� With un = ��$n and $ < 1=2; that can allow us to eliminate all the

increments from the continuous part of he model.

� In terms of the power variations B :

U(p; un;�n) = B(p;1;�n)�B(p; un;�n):



� Sometimes, we will simply count the number of increments of X; that
is, take the power p = 0

U(0; un;�n) =
[T=�n]X
i=1

1fj�ni Xj>ung
:



2. Combinations of (p; u;�)
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3. The Paper

3.1. Contribution

� Uses high frequency spectrum statistics to compare US Treasury mar-

kets before and after the crisis. Provides a view of the crisis as it

unfolded under the microscope.

� Explores the dependence of the statistics on p; as a third dimension
of variation.

� Proposes a statistics focused on asymmetric tail behavior between the
two sample periods.



3.2. The Results

� High frequency data for US Treasuries during the global �nancial crisis
period from July 2007 until December 2008 and a pre-crisis period

from July 2004 to July 2007.

� 2, 5, 10 and 30 year maturities.

� Provide interesting insights since US Treasuries are the main recipients
of funds 
ying to quality in periods of crisis (2007-08 but also Asian

currencies, LTCM, etc.), so the di�erences between before and after

should be more visible there than in equities.



� The spectrum statistics provide a much �ner characterization of the

environment compared to using only realized variance, which would

only show an increase in total risk (= variance) during the crisis: 90%

implied vol at the height of the crisis in equities

� SJ : Pre-crisis the distribution is less distinguishable from noise whereas
during the crisis period, almost all of the distribution supports the null

of jump activity.



� SFA : Both the pre-crisis and crisis distributions are centered around
1, consistent with in�nite activity jumps. The distribution has a lower

variance in the crisis period, centering its mass tightly on 1.

� SW : The distribution is barely changed across the pre-crisis and crisis

samples, and clearly supports the presence of Brownian motion in the

data generating process (on top of jumps of in�nite activity).



� Relative magnitudes of the components

{ The Brownian component accounts for 40% or less of quadratic

variation in the pre-crisis period, and this drops to less than 20%,

and as low as 15% for the 2 and 5 year bonds, in the crisis period.

{ The proportion of small jumps does not change very much from

the pre-crisis to crisis periods, but the proportion of large jumps

increases for all maturities in the crisis period.

{ The shorter maturities show the greatest proportion of large jumps

during the crisis.



� Conclusion:

{ fairly stable underlying process (with continuous component and

jumps)

{ but greater certainty in distinguishing the presence of jumps from

microstructure noise

{ and reveals the increased presence of large jumps during the crisis

period.



3.3. Comments/Questions

� Concatenating the spectrum statistics across di�erent power (two di-

mensional analysis) suppresses potentially useful information in the

three-dimensional analysis: I agree

{ Usefulness depends on your prior: is the null limit dependent on p

(as in kp=2�1) or not (as in 1)

{ If it is, then one should either not concatenate, or report a range

of limits

� Interaction between size of tails and powers: isn't this what higher
powers (p) should pick up?



� Distinction between a regime switch and a (large) jump?

� Before vs. after: Could construct formal Chow-type tests for the

spectrum statistics?



3.4. Asymmetric Tail Statistics

� Nice idea

{ construct a statistic describing each tail of the distribution: S+E
and S�E

{ instead of using absolute results

{ minor point: should be de�ned including p



� Compare before and after crisis:

{ Right tail: greater mass during the crisis period, consistent with

existing results about increasing right skewness during crisis periods

{ Left tail: Long maturities increases, short maturities decreases (rates

dropped to near 0)

{ Consistent with 
ight to cash and quality in US Treasury bonds.

During the crisis there was high demand for these assets and they

experienced relatively little of the large falls in return experienced

in other asset markets.


