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Paper Summary

Question: What is the effect of incorporating “realistic” error structures on estimates
of affine term-structure models?

I Existing literature generally assumes i.i.d. measurement errors (Duan and
Simonato (1999), Chen and Scott (2003), Schwartz (1997)).

I Applications: Bonds and commodities.

Method: Maximum likelihood estimation + (extended) Kalman filter.

I Requires specifying dynamics of latent factors (state equation) and structure of
measurement errors (observation equation).

Results:

1. Incorporating error structure is important for inference regarding the dynamics of
latent factors in affine term-structure models (ATSM).

2. Monte Carlo analysis indicates cross-sectional correlation is less of a problem,
than time-series autocorrelation.

3. Likelihood ratio tests indicate the augmented state space form (SSF) is
significantly better than the basic SSF.
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Paper Summary
Motivation

Residuals from the fitting standard term-structure models are auto-correlated both in
the cross-section and the time-series (de Jong (2000); this paper, Table 4).

I Breusch-Godfrey serial correlation LM test is a more robust alternative to the
Durbin-Watson statistic.



Affine Term-Structure Models (ATSM)

In the canonical representation of an affine term structure model, the interest rate is
driven by an N-factor state vector, Yt :

rt = φ0 + φ′
Y · Yt

dYt = K · (Θ− Yt) · dt + Σ ·
√

Υt · dW Q
t

with variance terms, [Υt ]ij = aij + bij · Yt .

I Bond prices are exponential affine in the state vector → yields are affine in Yt .

yt = A(τ) + B(τ) · Yt

∆yt = B(τ) ·∆Yt

I Dai and Singleton (2000) characterize the maximally flexible models within each
class (canonical representation), Am(N) (0 ≤ m ≤ N).

I Examples: Vasicek ∈ A0(1), Cox-Ingersoll-Ross (1985) ∈ A1(1).
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Principal Components

Litterman and Scheinkman (1991) argue that ≈ 99% of the variation in yields can be
explained using three factors.

I Principal components analysis
I k linearly-independent series → k factors.
I Factors are orthogonal and maximize explanatory R2.

I Each factor can be represented as a linear combination of the underlying series
(yields).

I U.S. data most consistent with A1(3) and A2(3) term structures (Dai and
Singleton (2002)).



Principal Components

Litterman and Scheinkman (1991) argue that ≈ 99% of the variation in yields can be
explained using three factors.

I Principal components analysis
I k linearly-independent series → k factors.
I Factors are orthogonal and maximize explanatory R2.

I Each factor can be represented as a linear combination of the underlying series
(yields).

I U.S. data most consistent with A1(3) and A2(3) term structures (Dai and
Singleton (2002)).



Principal Components
On the importance of squiggles

I Data: Jan 1982 - June 2010; Federal Reserve H15 Report (3M, 6M, 1Y, 2Y, 3Y,
5Y, 7Y, 10Y).

I Fraction of variance explained by principal components

Levels (yi,t) Changes (∆yi,t)
Factor 1 (level) 97.63% 78.52%
Factor 2 (slope) 2.23% 14.49%

Factor 3 (curvature) 0.11% 3.04%
Factor 4 0.02% 1.83%

Factors 5-8 < 0.01% 2.11%

I Elementary my dear Watson ... the fourth factor is the squiggle.

3m 6m 1y 2y 3y 5y 7y 10y
Levels -0.46 0.39 0.51 -0.20 -0.32 -0.22 -0.10 0.42

Changes -0.21 0.56 -0.07 -0.51 -0.37 0.00 0.27 0.39



Principal Components
On the importance of squiggles

Suppose the factors, Yt , from the affine term-structure model, map onto the principal
components. What should we expect to see from the residuals from a three-factor
model?

I The residuals from projecting a k yields onto N-factors – an Am(N) model –
would be linear combinations of the remaining k − N principal components.

I Compare the properties of the “model-fitting errors” with the squiggle factor.

1. The fourth level factor is quite persistent, ρ1 = 0.95 (daily) → half-life of
approximately one-month.

2. Even the 8th factor’s persistence is ρ1 = 0.85 (daily) → half-life of about one week.

I Prediction: The errors from the augmented estimation procedure should still
exhibit autocorrelation.

But ... what exactly is the empirical relation between the principal components and
the factors?

I Do regressions of yields on the filtered factor series, Yt , produce R2 of 99%?
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Errors vs. Factors

I Recall: Fit Am(3) model → examine fitting errors → add a factor structure to
observation equation.

I How is incorporating a realistic structure for a model-fitting error different from
adding another factor, Am(N + 1)?

I Use likelihood ratio test to examine the whether the Am(N + 1) improves on Am(N).
I What is the influence of adding a fourth factor on the coefficient estimates of the first

three factors?
I What is the relation between the first principal component of the error series from

estimating a three-factor model via ASSF, and the fourth factor in an A1(4) or A2(4)?



Other Comments

1. What is the influence of using the discretized transition density, rather than the
true density on parameter estimation?

I Transition density not only depends on Yt , but will generally be non-Gaussian.
I Solves problem of positive-definiteness.

2. The effect of measurement errors on Kalman filter parameter estimates, likely
depends on the structure of the noise vis-a-vis the structure of “actual” latent
factors.

I How robust is the conclusion that cross-sectional correlation is less important than
time-series auto-correlation?

I The error structure in the Monte Carlo analysis looks like a convexity factor.


