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Abstract

In this paper, we work in the framework of the Merton problem
[17] but we impose a drawdown constraint on the consumption process.
This means that consumption can never fall below a fixed proportion
of the running maximum of past consumption. In terms of economic
motivation, this constraint represents a type of habit formation where
the investor is reluctant to let his standard of living fall too far from
the maximum standard achieved to date. We state our candidate
value function and optimal controls then provide a rigorous verification
argument.
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1 Introduction

The Merton problem – a question about optimal portfolio selection and con-
sumption in continuous time – is indeed ubiquitous throughout the mathe-
matical finance literature. Since Merton’s seminal paper [17] in 1971, many
variants of the original problem have been put forward and extensively stud-
ied to address various issues arising from economics. For example, Fleming
and Hernández–Hernández [11] considered the case of optimal investment
in the presence of stochastic volatility. Davis and Norman [6], Dumas and
Luciano [8], and more recently Muhle-Karbe and co-authors [5], [13], [18] ad-
dressed optimal portfolio selection under transaction costs. Rogers and Sta-
pleton [24] considered optimal investment under time-lagged trading. Vila
and Zariphopoulou [26] studied optimal consumption and portfolio choice
with borrowing constraints. The effects of different types of habit formation
on optimal investment and consumption strategies have been explored in [3],
[14], and [19]. Rogers [23] considers many interesting variations of the Mer-
ton problem.

A particular class of constrained optimal investment problems that forms
an important and recurring theme in mathematical finance is optimal in-
vestment under a drawdown constraint. This constraint, roughly speaking,
means that a certain process has to remain above a fixed proportion of the
running maximum of its past values. Drawdown constraints on wealth have
been studied by Elie and Touzi [10], and Roche [21]. Carraro, El Karoui,
and Ob lój [1], and Cherny and Ob lój [2] studied drawdown constraints in
more general semimartingale settings via Azéma–Yor processes. Grossman
and Zhou [12] considered the problem of maximising the long-term growth
rate of expected utility of final wealth, subject to a drawdown constraint.

The case we consider in this paper is the Merton problem with a draw-
down constraint on consumption. Under this condition, the investor cannot
let consumption fall below a fixed proportion of the running maximum of
past consumption. In terms of economic motivation, this represents a type
of habit formation where once the investor has reached a certain standard of
living, he is reluctant to let his standard of living to fall too far from that level.

To be precise, we consider an agent who can invest in a risk-free bank account
and a risky stock modelled by geometric Brownian motion. The agent seeks
to maximise the expected infinite horizon discounted utility of consumption
by finding the optimal portfolio selection and consumption strategies – sub-
ject to the drawdown constraint on consumption. As in the original Merton

2



set-up we take the agent’s utility function to be of constant relative risk aver-
sion (CRRA).

We obtain our candidate value function and candidate optimal controls us-
ing a heuristic argument (included in the appendix) which involves solving
the Hamilton-Jacobi-Bellman equation and transforming to dual variables.
This is because the dual problem is significantly easier to handle and has
an explicit analytic solution, which we invert to obtain our candidate value
function and candidate optimal controls. To prove optimality, we modify
the approach of Dybvig [9] (who considered the case where consumption is
non-decreasing). We adapt methods used in Elie and Touzi [10] (who consid-
ered the wealth drawdown case) to prove that under the candidate optimal
controls there exists a unique strong solution to the wealth equation. Our re-
sults show that the key parameter in this problem is the ratio of the investor’s
wealth to the running maximum of past consumption. For the optimal solu-
tion, we observe four different regions of behaviour based on the value of this
parameter. For low values, consumption is restricted to the minimum level
possible without violating the drawdown constraint. As the ratio increases,
consumption increases with wealth. In the third region, we consume at the
highest recorded level of consumption to date while we wait for the ratio to
hit a critical level, after which we increase consumption to a new maximum.
We specify the boundaries of these regions explicitly, as well as the optimal
portfolio selection and consumption rules in each case.

This paper is organised as follows. In section 2, we outline the market model
that we will be working in. In section 3, we state our candidate value function
and candidate optimal controls then state the main results of this paper. In
section 4, we give an intuitive explanation for the form of the optimal con-
trols and provide plots of the value function and optimal controls. We also
investigate numerically the effect of varying the drawdown constraint on the
value function. Section 5 provides a rigorous verification argument to prove
the optimality of our conjectured solution. In section 6, we give proofs for
the technical lemmas stated in section 3 which concern the existence and
uniqueness of a strong solution to the wealth equation under the optimal
controls. In section 7, we give an argument to show that, just like in the
standard Merton problem, the case we consider here is ill-posed for R ≤ R∗

for a certain 0 < R∗ < 1 which we specify, where R represents the agent’s co-
efficient of relative risk aversion. We give a brief conclusion in section 8. The
heuristic argument for deriving our candidate value function and candidate
optimal controls is included in the appendix.
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2 Market model

We work in a filtered probability space, (Ω,F , (Ft)t≥0,P), endowed with
a standard Brownian motion, W = (Wt)t≥0. For convenience, we define
Et[·] = E[·|Ft].

Our market set-up is the same as in the standard Merton problem. For-
mally, we have a risk-free bank account with constant interest rate, r > 0,
and a risky stock, S, with price dynamics given by

dSt = St(σdWt + µdt)

for constant volatility, σ > 0, and constant drift, µ ∈ R. To make the stock
attractive to the investor, we assume that µ > r.

We define an investment strategy to be an adapted process θ = (θt)t≥0 taking
values in R satisfying the integrability condition

∫ T

0

θ2t dt < ∞ a.s. for all T > 0. (1)

A consumption strategy is an adapted process c = (ct)t≥0 taking values in
R+ satisfying

∫ T

0

ctdt < ∞ a.s. for all T > 0. (2)

Given y > 0 and a consumption strategy c, define Y y,c = (Y y,c)t≥0 to be

Y y,c
t = max

{

Y y,c
0− , ess sup

0≤s≤t
cs

}

(3)

where Y y,c
0− = y. From a financial perspective, we can interpret Y y,c

0− in two
ways: either as the maximum value of the investor’s past consumption before
time 0, or as the investor’s preference for a particular standard of living in
the future. Thus the process Y y,c represents the running maximum of the
consumption process taking into account the investor’s past consumption or
future preference via the value of y.

Next, given x > 0 and a particular investment and consumption strategy
(θ, c), our wealth process Xx,θ,c = (Xx,θ,c

t )t≥0 evolves according to the follow-
ing wealth equation

dXx,θ,c
t = rXx,θ,c

t dt + θt(σdWt + (µ− r)dt) − ctdt (4)
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for initial wealth Xx,θ,c
0 = x and where

Xx,θ,c
t = our wealth at time t

ct = our consumption at time t

θt = the wealth in the stock at time t.

At times we will drop the superscripts on Xx,θ,c
t and Y y,c

t when there is
no ambiguity over which initial conditions and investment and consumption
strategy we are referring to.

Finally, let Ab(x, y) denote the set of investment and consumption strate-
gies (θ, c) which satisfy (1) and (2) together with the drawdown constraint
on consumption

ct ≥ bY y,c
t a.s. (5)

for all t ≥ 0 and for a fixed 0 < b < 1.

Remark 1. As we will see in Proposition 1, any (θ, c) ∈ Ab(x, y) satisfies
Xx,θ,c

t ≥ 0 almost surely for all t ≥ 0 so we do not need to worry about
including notions of admissibility in the definition of Ab(x, y).

Clearly, the case b = 0 is just the standard Merton problem, and taking b = 1
gives the special case where consumption is constrained to be non-decreasing.
The b = 1 case was investigated by Dybvig [9] in 1995, and like the stan-
dard Merton problem it is possible to obtain an explicit solution in this case.
However, taking 0 < b < 1 gives a continuum of cases between these two
extremes where the parameter b in a sense represents the willingness of the
investor to sacrifice a proportion of his current standard of living in exchange
for greater utility in the long-run.

In this paper, we will consider the following optimal investment and con-
sumption problem

sup
(θ,c)∈Ab(x,y)

E

[
∫ ∞

0

e−ρtU(ct)dt

]

(†)

where ρ > 0 represents the agent’s preference for the present and we take the
agent’s utility function, U , to be of constant relative risk aversion (CRRA),

that is U(x) = x1−R

1−R
for R 6= 1, and U(x) = log x for R = 1, where R is

a positive real number which represents the investor’s coefficient of relative
risk aversion. For brevity, we exclude the case R = 1 from this paper because
the analysis and results for this special case are very similar to the case R 6= 1.
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Exactly as we see in the standard Merton problem, it turns out that for
(†) to be finite we require γM > 0 where

γM =
1

R

[

ρ− (1 −R)

(

r +
κ2

2R

)]

(6)

and κ = µ−r
σ

. This is equivalent to taking R > R∗ for a particular 0 < R∗ < 1
given by

R∗ =
1

2r



−

(

ρ− r +
κ2

2

)

+

√

(

ρ− r +
κ2

2

)2

+ 2rκ2



 (7)

For more details on this, we refer the reader to section 7 where we demon-
strate investment and consumption strategies that make (†) infinite for the
case R ≤ R∗.

3 Statement of results

In this section, we first make a few preliminary definitions before stating our
main results which give the value function and optimal controls for (†) and
also show existence and uniqueness of a strong solution to the wealth equa-
tion under these controls.

We obtained the value function and optimal controls via a heuristic argument
that involved solving the Hamilton-Jacobi-Bellman equation and considering
the dual formulation of the problem. We give this heuristic calculation in
the appendix and only state the results in this section.

Define J : R → R as follows.

J(s) =



































As1−R′

for 0 ≤ s ≤ a

Bs−α + Csβ − 1
r
s + U(1)

ρ
for a ≤ s ≤ 1

Ds−α + Esβ + 1
γM

Ũ(s) for 1 ≤ s ≤ b−R

Fs−α − b
r
s + U(b)

ρ
for b−R ≤ s < ∞

(8)

where R′ = 1/R and

Ũ(s) = sup
x>0

{U(x) − xs} = −
s1−R′

1 −R′
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C =

(

b1+R(β−1) − 1
)

β(α + β)

[

1

RγM
(R(α + 1) − 1) −

α + 1

r

]

−α < 0 < 1 < β are the roots of

Q1(t) =
1

2
κ2t(t− 1) + (ρ− r)t− ρ

a is the root between 0 and 1 of

Q2(t) = (α + β)(R(β − 1) + 1)Ctβ −
(α + 1)t

r
+

α

ρ

A =
aR

′−1

γM

[

1

1 −R
− a

]

B =
aα

(α + β)(R(α + 1) − 1)

[

β

ρ
+

(1 − β)a

r

]

D = B +
1

α(α + β)

[

β − 1

r
−

1

RγM
(1 + R(β − 1))

]

E =
b1+R(β−1)

β(α + β)

[

1

RγM
(R(α + 1) − 1) −

α + 1

r

]

F = B +

(

1 − b1−R(α+1)
)

α(α + β)

[

β − 1

r
−

1

RγM
(1 + R(β − 1))

]

Define v : R → R as the dual transform of J :

v(z) = inf
0<s<∞

{J(s) + zs} (9)

It is straightforward though tedious to show that J ′ < 0 and J ′′ > 0. Thus
the infimum on the righthand side of (9) is attained for s = (J ′)−1(−z). We
refer the reader to Rockafellar [22] for more information on dual transforms.

Unfortunately, for 0 < b < 1 it is not possible to invert J ′ analytically
in all four regions so we cannot obtain v explicitly in all regions. However,
we can obtain v explicitly for two of the four regions:

v(z) =















(z− b
r )

1−R∗

1−R∗
(αF )R

∗

+ U(b)
ρ

for b/r ≤ z ≤ zb−R

U(z)
[

1
−A(1−R′)

]−1/R′

for za ≤ z < ∞

(10)
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For the inner two regions, zb−R ≤ z ≤ z1 and z1 ≤ z ≤ za we have to obtain
v numerically. In the above, we use the notation zs = −J ′(s).

Finally define our candidate value function V : R+ × R+ → R by

V (x, y) = y1−Rv

(

x

y

)

(11)

for x/y ≥ b/r. We now define our candidate optimal investment and con-
sumption strategy. Let

θ̂(x, y) = −
µ− r

σ2

Vx(x, y)

Vxx(x, y)
for x/y ≥ b/r (12)

ĉ(x, y) =



















by for b/r ≤ x/y ≤ zb−R

(Vx(x, y))−1/R for zb−R ≤ x/y ≤ z1

y for z1 ≤ x/y ≤ za

x/za for za ≤ x/y < ∞.

(13)

Remark 2. As evidenced by the form of our candidate value function and
candidate optimal investment and consumption strategy in (11), (12) and
(13), the crucial parameter in this problem is x/y, the ratio of wealth to the
running maximum of past consumption. In view of this, we define Zx,y,θ,c

t =
Xx,θ,c

t /Y y,c
t for t ≥ 0 and we also define z = x/y which explains our choice of

notation in (9) and (10). An intuitive explanation of how this ratio affects
the optimal controls is given in section 4.

Define Db/r = {(x, y) ∈ R+ × R+ : x/y ≥ b/r}. Note that the functions V ,

θ̂ and ĉ are only defined for (x, y) ∈ Db/r. This is because, as we will see

in Proposition 1, for any (θ, c) ∈ Ab(x, y) we must have (Xx,θ,c
t , Y y,c

t ) ∈ Db/r

almost surely for all t ≥ 0.

Now fix (x, y) ∈ Db/r and consider the following system of equations

dXt = (rXt − ĉ(Xt, Yt))dt + θ̂(Xt, Yt)(σdWt + (µ− r)dt) (14)

Yt = max

{

Y0−, ess sup
0≤s≤t

ĉ(Xs, Ys)

}

for t ≥ 0 (15)

where (X0, Y0−) = (x, y). We are interested in proving the existence and
uniqueness of a strong solution to (14) and (15). However, by the definition
of ĉ in (13), we have that (Xt, Yt)t≥0 is a solution to (14) and (15) if and only
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if (Xt, Yt)t≥0 is a solution to (14) and (16) as given below,

Yt = max

{

y,
X̄t

za

}

for t ≥ 0 (16)

where X̄t = sup0≤s≤t Xs. Define Da = {(x, y) ∈ R × R+ : x/y ≤ za} and
observe that by (16) we have that any solution (Xt, Yt)t≥0 to (14) and (16)
is such that (Xt, Yt) ∈ Da almost surely for all t ≥ 0. On the set Da\Db/r,

θ̂ and ĉ are not defined but we extend them continuously here by setting
θ̂(x, y) = 0 and ĉ(x, y) = by so that θ̂ and ĉ are defined on the whole of Da.

Remark 3. Extending θ̂ and ĉ this way will not affect the form of the solution
because as we will see in the proof of Lemma 3, the unique strong solution
(Xt, Yt)t≥0 satisfies (Xt, Yt) ∈ Db/r ∩ Da almost surely for t ≥ 0.

We now present a few technical lemmas, the proofs of which are deferred to
section 6.

Lemma 1. θ̂ and ĉ are Lipschitz on Da.

Lemma 2. The system of equations (14) and (15) has a unique strong so-
lution for initial conditions (X0, Y0−) = (x, y) ∈ Db/r.

For the next two results, we fix (x, y) ∈ Db/r and set (X0, Y0−) = (x, y). We
let (Xt, Yt)t≥0 be the unique strong solution to (14) and (15) subject to these

initial conditions. Finally, define (θ∗, c∗) = (θ∗t , c
∗
t )t≥0 by θ∗t = θ̂(Xt, Yt) and

c∗t = ĉ(Xt, Yt) for t ≥ 0.

Lemma 3. (θ∗, c∗) ∈ Ab(x, y).

Our main result is given below. The proof is reported in section 5.

Theorem 1. The investment and consumption strategy (θ∗, c∗) is an optimal
solution to (†). Moreover, the function V is the value function for (†). That
is

V (x, y) = sup
(θ,c)∈Ab(x,y)

E

[
∫ ∞

0

e−ρtU(ct)dt

]

for all (x, y) ∈ Db/r.

4 Analysis of results

In this section, we provide plots of the value function and the optimal in-
vestment and consumption strategies. We give an intuitive explanation for
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the form of the optimal controls and lastly, we investigate numerically the
effect of varying b (i.e. tightening or loosening the drawdown constraint) on
the value function.

In Figure 1, we plot the function, J , and its dual function, v, as well as
the optimal controls, θ̂ and ĉ.

An intuitive explanation for the form of the optimal controls is as follows.
Recall that we define z = x/y, the ratio of wealth to the running maximum
of consumption. We also let Zx,y,θ∗,c∗

t = Xx,θ∗,c∗

t /Y y,c∗

t and for convenience
we drop the superscripts.

First consider b/r ≤ z ≤ zb−R , which is the region where z is smallest. At
Zt = b/r, we have just enough wealth to maintain the drawdown constraint
if we put all our wealth in the bank account and consume the interest, so
θ∗t = 0 and c∗t = bYt = rXt. As Zt increases to zb−R we still consume at the
minimum allowed level, bYt, but we have excess wealth which we invest in
the risky stock.

As Zt increases into the next region zb−R ≤ z ≤ z1, we now have more
wealth compared to the running maximum of consumption so can afford to
consume at a higher level. Thus c∗t increases with Zt until we have c∗t = Yt

which occurs at Zt = z1.

For z1 ≤ z ≤ za, we do not yet have enough wealth to support consumption
at a higher level so we keep our consumption constant at c∗t = Yt. However,
we allow our investment in the risky stock θ∗t to increase with Zt.

In the final region, za ≤ z < ∞, we have more than enough wealth to
support consumption at the current maximum Yt so the optimal action is
to immediately increase Yt until Zt decreases to za. In actual terms this is
achieved by having Yt = max{Y0−, X̄t/za} where X̄t = sup0≤s≤t Xs so when
Yt is increasing, Zt is actually held constant at Zt = za.

In Figure 2, we provide a simulation of the stock price followed by plots
of Z and the optimal controls, all against time, based on this simulation.
The horizontal dashed lines in Figure 2b represent the critical values b/r,
zb−R , z1, and za which give the boundaries of the four different regions of
behaviour. As Zt moves between these different regions, we can see the effect
on the optimal consumption rule in Figure 2d. In the simulation, consump-
tion initially varies with Zt, then as Zt increases, consumption is maintained
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at level Yt. As Zt increases further, Yt is occasionally raised to keep Zt ≤ za.
Finally as the stock price plummets, Zt falls as well, so consumption drops
until it hits bYt and is maintained at that level so as not to violate the draw-
down constraint.

Figure 3a shows the dual function, v, as a function of z for several values
of b. Note that by (11), v is essentially a scaled version of the value func-
tion V . We clearly see that v decreases as b increases, because increasing b
tightens the drawdown constraint, which in turn restricts the class strategies,
Ab(x, y). Finally, Figure 3b plots v(z) against b for several values of z. In
this plot, we see once again how increasing b decreases the value of v(z), as
one expects.

5 Verification argument

In this section, we prove Theorem 1 by modifying the argument of Dybvig
[9], which essentially uses the Davis–Varaiya Martingale Principle of Optimal
Control [7]. We first prove a result that illustrates why it is sufficient to define
V , θ̂ and ĉ for (x, y) ∈ Db/r as in (11), (12) and (13).

Proposition 1. If (θ, c) ∈ Ab(x, y) then (Xx,θ,c
t , Y y,c

t ) ∈ Db/r almost surely
for all t ≥ 0.

Proof. Let ζt = exp(−rt− 1
2
κ2t−κWt) denote the unique state-price density.

Then it is a standard result (see Remark 9.3 page 137 in Karatzas and Shreve

[16]) that Xx,θ,c
t ≥ Et

[

∫∞

s=t
ζscs
ζt

ds
]

almost surely. Thus

Xx,θ,c
t ≥ Et

[
∫ ∞

s=t

ζsbY
y,c
t

ζt
ds

]

=

∫ ∞

s=t

e−r(s−t)bY y,c
t ds =

bY y,c
t

r
a.s.

which gives the result.

We will prove Theorem 1 via a series of lemmas. In what follows, we will
always take (X0, Y0−) = (x, y) ∈ Db/r. Our first lemma is as follows.

Lemma 4. The function V satisfies the Hamilton-Jacobi-Bellman (HJB)
equation

max

{

Vy, sup
θ∈R,c≥by

[

−ρV + Vx(rx + θ(µ− r) − c) +
1

2
σ2θ2Vxx + U(c)

]}

= 0.

(17)
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(d) ĉ against z

Figure 1: The vertical dashed lines represent the critical values b/r, zb−R , z1,
and za which give the boundaries of the four different regions of behaviour.
For all graphs we take b = 0.7, y = 2, R = 2, ρ = 0.02, r = 0.05, σ = 0.35,
and µ = 0.14.
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zb−R , z1, and za which give the boundaries of the four different regions of
behaviour. For all graphs we take b = 0.7, y = 2, R = 2, ρ = 0.02, r = 0.05,
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Proof. By direct verification using (8), one can check that J satisfies

0 = (1 −R)J + RsJ ′ for 0 < s ≤ a
0 = −ρJ + (ρ− r)sJ ′ + 1

2
κ2s2J ′′ + U(1) − s for a ≤ s ≤ 1

0 = −ρJ + (ρ− r)sJ ′ + 1
2
κ2s2J ′′ + Ũ(s) for 1 ≤ s ≤ b−R

0 = −ρJ + (ρ− r)sJ ′ + 1
2
κ2s2J ′′ + U(b) − bs for b−R ≤ s < ∞.

(18)
Note that since J is twice continuously differentiable, so is its dual v. Using
the link between the derivatives of J and its dual v (we refer the reader to
Rockafellar [22] for more details) this implies that

0 = −ρv + rzv′ − 1
2
κ2 (v

′)2

v′′
+ U(b) − bv′ for b/r ≤ z ≤ zb−R

0 = −ρv + rzv′ − 1
2
κ2 (v

′)2

v′′
+ Ũ(v′) for zb−R ≤ z ≤ z1

0 = −ρv + rzv′ − 1
2
κ2 (v

′)2

v′′
+ U(1) − v′ for z1 ≤ z ≤ za

0 = (1 −R)v − zv′ for za ≤ z < ∞.

(19)

Finally by (11), we have

0 = −ρV + rxVx −
1
2
κ2 V 2

x

Vxx
+ U(by) − byVx for b/r ≤ x/y ≤ zb−R

0 = −ρV + rxVx −
1
2
κ2 V 2

x

Vxx
+ Ũ(Vx) for zb−R ≤ x/y ≤ z1

0 = −ρV + rxVx −
1
2
κ2 V 2

x

Vxx
+ U(y) − yVx for z1 ≤ x/y ≤ za

0 = Vy for za ≤ x/y < ∞.

(20)
From (8), it is straightforward although surprisingly tedious to verify that
(1 −R)J + RJ ′s ≤ 0, J ′ < 0 and J ′′ > 0. By (9) and (11), this is equivalent
to Vy ≤ 0, Vx > 0 and Vxx < 0. This together with (20) implies that V
satisfies the HJB equation (17).

To proceed further, we need the following definition.

Definition 1. For (θ, c) ∈ Ab(x, y), define

ξx,y,θ,ct =

∫ t

0

e−ρsU(cs)ds + e−ρtV (Xx,θ,c
t , Y y,c

t ). (21)

We have the following result.

Lemma 5. For any (θ, c) ∈ Ab(x, y), (ξx,y,θ,ct )t≥0 is a local supermartingale.
For (θ∗, c∗), (ξx,y,θ

∗,c∗

t )t≥0 is a local martingale.
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Proof. By Itô’s formula,

dξx,y,θ,ct = σθtVxdWt + Lθ,cV dt + VydY
y,c
t (22)

where

Lθ,cV (x, y) = −ρV + Vx(rx + θ(µ− r) − c) +
1

2
σ2θ2Vxx + U(c). (23)

For any (θ, c) ∈ Ab(x, y), Lemma 4 and (22) imply that ξx,y,θ,c is equal to
a local martingale plus a decreasing drift term, thus ξx,y,θ,c is a local super-
martingale.

Now consider (θ∗, c∗). By (16), Lemma 3 and Proposition 1, we have that
(Xx,θ∗,c∗

t , Y y,c∗

t ) ∈ Db/r ∩ Da almost surely for all t ≥ 0 or equivalently that

b/r ≤ Zx,y,θ∗,c∗

t ≤ za almost surely for all t ≥ 0. For b/r ≤ Zx,y,θ∗,c∗

t < za,
Y y,c∗

t is constant so VydY
y,c∗

t = 0 and we also have Lθ∗,c∗V = 0 by (20). Note

that by (16), when Y y,c∗

t is increasing we have that Zx,y,θ∗,c∗

t is held constant
at za at which point Vy = 0 and Lθ∗,c∗V = 0 by (20). Putting this all together
gives that ξx,y,θ

∗,c∗ is equal to a local martingale plus a zero drift term, which
gives the result.

The next step is to strengthen the conclusion of the above lemma from local
(super)martingale to (super)martingale. To do this, we first need to prove a
result about the wealth process.

Lemma 6. Fix p 6= 0. We have that

E

[(

Xx,θ∗,c∗

t

)p]

≤ xp exp(b̃t) (24)

for a constant b̃ that depends on p and the parameters of the problem.

Proof. For convenience, we drop the superscripts on Xx,θ∗,c∗

t and Y y,c∗

t . An
application of Itô’s formula to logXp

t gives

Xp
t = xp exp

(

∫ t

s=0

p

(

r +
θ∗s
Xs

(µ− r) −
c∗s
Xs

+
1

2
(p− 1)

(

θ∗s
Xs

)2

σ2

)

ds

)

× exp

(

∫ t

s=0

p
θ∗s
Xs

σdWs −
1

2

∫ t

s=0

p2
(

θ∗s
Xs

)2

σ2ds

)

. (25)

We wish to show that we can choose a constant b̃ to bound the integrand in
the first exponential. However, as we showed in the proof of Lemma 5, under
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(θ∗, c∗), we have that (Xt, Yt) ∈ Db/r∩Da almost surely for all t ≥ 0. Thus, it
is sufficient to show that the integrand in the first exponential is bounded for
(x, y) ∈ Db/r∩Da. To do this, it is enough to show that θ̂(x, y)/x and ĉ(x, y)/x

are bounded for (x, y) ∈ Db/r ∩ Da. Note that θ̂(x, y)/x = θ̂(x, y)/y × y/x
and ĉ(x, y)/x = ĉ(x, y)/y × y/x. Clearly, on Db/r ∩ Da, ĉ(x, y)/y is bounded
between 0 and 1, and y/x ∈ [1/za, r/b]. Finally, observe that by (9), (11)
and (12)

θ̂(x, y)

y
= −

µ− r

σ2

v′(x/y)

v′′(x/y)
=

µ− r

σ2
sJ ′′. (26)

By (10), we can check directly that (26) is bounded for b/r ≤ x/y ≤ zb−R .
By (8), we can check directly that (26) is bounded for a ≤ s ≤ b−R which
is equivalent to zb−R ≤ x/y ≤ za. This gives that θ̂(x, y)/y is bounded for
(x, y) ∈ Db/r ∩ Da as desired. Putting this all together gives that we can

choose a constant b̃ which depends on p and the parameters of the problem
that bounds the integrand in the first exponential.

Hence E[Xp
t ] ≤ xp exp(b̃t) since the second term in (25) is a non-negative

local martingale thus is a supermartingale so has expected value less or equal
to 1.

With the above result in hand, we can strengthen the conclusion of Lemma
5 to:

Lemma 7. For any (θ, c) ∈ Ab(x, y), (ξx,y,θ,ct )t≥0 is a supermartingale. For
(θ∗, c∗), (ξx,y,θ

∗,c∗

t )t≥0 is a martingale.

Proof. To show the first part of the lemma, given that by Lemma 5 (ξx,y,θ,ct )t≥0

is a local supermartingale, it is enough to show that ξx,y,θ,c is bounded below.
This is because is it easy to check that a local supermartingale bounded below
is a supermartingale. The fact that Vx > 0 (see proof of Lemma 5) together
with Proposition 1 implies that

V (Xx,θ,c
t , Y y,c

t ) ≥ V

(

bY y,c
t

r
, Y y,c

t

)

= U (bY y,c
t ) /ρ ≥ U(by)/ρ > −∞. (27)

Hence, V is bounded below. Using this, we can show that ξx,y,θ,c is bounded
below as follows.

ξt ≥

∫ t

0

e−ρsU(by)ds + e−ρtU(by)/ρ =
U(by)

ρ
> −∞ a.s.

which gives that ξx,y,θ,c is a supermartingale for any (θ, c) ∈ Ab(x, y).
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Now for the second part of the lemma. Given Lemma 5, we just need to
show that E〈ξx,y,θ

∗,c∗〉t < ∞ for all t ≥ 0, since this would imply that the
local martingale ξx,y,θ

∗,c∗ is in fact a true martingale (see Corollary 1.25 in
[25]). In the remainder of the proof, we drop the superscripts on ξx,y,θ

∗,c∗

t ,
Xx,θ∗,c∗

t , Y y,c∗

t and Zx,y,θ∗,c∗

t for convenience. Under (θ∗, c∗)

dξt = −κe−ρt V
2
x

Vxx

dWt = κe−ρtY 1−R
t s2tJ

′′dWt

where we have used (9) and (11) and where st = (J ′)−1(−Zt). From the
definition of J in (8), it is straightforward to check that s2J ′′ is bounded on
[a,∞) say |s2J ′′| ≤ M for some constant M > 0. Thus

E〈ξ〉t ≤ M2κ2

∫ t

0

E
(

Y 2(1−R)
s

)

ds (28)

where the use of Fubini’s theorem is justified because the integrand is positive.
Now recall that we take R > R∗ as mentioned in Section 2. Thus we have
the following two cases.

• R∗ < R < 1: We have Ys ≤
rXs

b
almost surely from Proposition 1. This

implies that

E
(

Y 2(1−R)
s

)

≤
(r

b

)2(1−R)

E
(

X2(1−R)
s

)

≤
(r

b

)2(1−R)

x2(1−R) exp(b̃s)

using the bound given by Lemma 6 taking p = 2(1 −R). Substituting
this into (28) gives that E〈ξ〉t < ∞ for all t ≥ 0.

• R > 1: We have that Y is an increasing process and Y0 ≥ y > 0 by
(3). Thus Y

2(1−R)
s ≤ y2(1−R) and substituting this into (28) once again

gives E〈ξ〉t < ∞ for all t ≥ 0.

In both cases, E〈ξx,y,θ
∗,c∗〉t < ∞ for all t ≥ 0 which implies that ξx,y,θ

∗,c∗ is a
martingale.

As a final step, we now address the asymptotic behaviour of the residual term
E[e−ρtV (Xx,θ,c

t , Y y,c
t )] for (θ, c) ∈ Ab(x, y). To do this we adapt the argument

given in Lemma 6 in Dybvig [9].

Lemma 8. For any (θ, c) ∈ Ab(x, y)

lim inf
t→∞

E[e−ρtV (Xx,θ,c
t , Y y,c

t )] ≥ 0. (29)

For (θ∗, c∗)
lim
t→∞

E[e−ρtV (Xx,θ∗,c∗

t , Y y,c∗

t )] = 0. (30)
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Proof. For any (θ, c) ∈ Ab(x, y), by (27) we have that

lim inf
t→∞

E[e−ρtV (Xx,θ,c
t , Y y,c

t )] ≥ lim
t→∞

e−ρtU(by)/ρ = 0.

Now, for (θ∗, c∗), we will consider the cases R > 1 and R∗ < R < 1 separately.
For R > 1, we have J(0) = 0 hence by (9) we deduce that v(z) ≤ 0 for all
z ≥ b/r which in turn implies that V ≤ 0 by (11). But we just showed
(29) so we must have (30) as required. Finally for R∗ < R < 1, recall that
(Xx,θ∗,c∗

t , Y y,c∗

t ) ∈ Db/r ∩ Da almost surely for t ≥ 0 by (16), Lemma 3 and
Proposition 1, and that Vy ≤ 0 by (17). This together with (10) and (11)
implies that for (x, y) ∈ Db/r ∩ Da we have

V (x, y) ≥ V
(

x,
rx

b

)

=
r1−Rx1−R

ρ(1 −R)
.

Once more using that Vy ≤ 0 by (17) we see that for (x, y) ∈ Db/r ∩ Da we
have

V (x, y) ≤ V

(

x,
x

za

)

=
x1−R

1 −R

[

1

−A(1 −R′)

]−1/R′

where the equality is by (10) and (11). Hence, to obtain (30) it is enough to
show that

E

[

e−ρt(Xx,θ∗,c∗

t )1−R
]

→ 0 as t → ∞.

Taking p = 1 −R in (25) and dropping the superscript on Xx,θ∗,c∗

t gives

E
[

e−ρtX1−R
t

]

= x1−R
E

[

exp

(

∫ t

0

(1 −R)

(

r +
θ∗s
Xs

(µ− r) −
c∗s
Xs

−
R

2

(

θ∗s
Xs

)2

σ2

)

− ρ ds

)

× exp

(

∫ t

0

(1 −R)
θ∗s
Xs

σdWs −
1

2

∫ t

0

(1 −R)2
(

θ∗s
Xs

)2

σ2ds

)]

≤ x1−R
E

[

exp

(
∫ t

0

(

(1 −R)

(

r +
κ2

2R

)

− ρ

)

ds

)

× exp

(

∫ t

0

(1 −R)
θ∗s
Xs

σdWs −
1

2

∫ t

0

(1 −R)2
(

θ∗s
Xs

)2

σ2ds

)]

where the quadratic form (µ − r) θ∗s
Xs

− Rσ2

2

(

θ∗s
Xs

)2

in θ∗s
Xs

was replaced by its

maximum value (µ−r)2/2σ2R and c∗s
Xs

was replaced by 0, a lower bound. Also,
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note that the second exponential term is a non-negative local martingale so
is a supermartingale thus has expected value less or equal to 1. Hence

E

[

e−ρt(Xx,θ∗,c∗

t )1−R
]

≤ x1−R exp

(

−

(

ρ− (1 −R)

(

r +
κ2

2R

))

t

)

= x1−R exp(−RγM t)

→ 0 as t → ∞

since γM (defined in (6)) is strictly positive by assumption (see section 2).

We are now ready to provide a proof of our main result, Theorem 1.

Proof of Theorem 1. We need to show that for (θ∗, c∗)

V (x, y) = E

[
∫ ∞

t=0

e−ρtU(c∗t )dt

]

and also that for any (θ, c) ∈ Ab(x, y),

V (x, y) ≥ E

[
∫ ∞

t=0

e−ρtU(ct)dt

]

.

By Lemma 7, we have that under (θ∗, c∗), ξx,y,θ
∗,c∗ is a martingale which gives

V (x, y) = ξx,y,θ
∗,c∗

0

= lim
t→∞

E[ξx,y,θ
∗,c∗

t ]

= lim
t→∞

E

[
∫ t

s=0

e−ρsU(c∗s)ds + e−ρtV (Xx,θ∗,c∗

t , Y y,c∗

t )

]

= lim
t→∞

E

[
∫ t

s=0

e−ρsU(c∗s)ds

]

+ lim
t→∞

E[e−ρtV (Xx,θ∗,c∗

t , Y y,c∗

t )]

= E

[
∫ ∞

t=0

e−ρtU(c∗t )dt

]

where we have used Lemma 8, and exchanging the order of the expectation
and the limit is justified by U(c∗s) ≥ U(by) > −∞.

To complete the proof observe that by Lemma 7, for any (θ, c) ∈ Ab(x, y),
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ξx,y,θ,c is a supermartingale, hence

V (x, y) = ξx,y,θ,c0

≥ lim
t→∞

E[ξx,y,θ,ct ]

= lim
t→∞

E

[
∫ t

s=0

e−ρsU(cs)ds + e−ρtV (Xx,θ,c
t , Y y,c

t )

]

= lim
t→∞

E

[
∫ t

s=0

e−ρsU(cs)ds

]

+ lim
t→∞

E[e−ρtV (Xx,θ,c
t , Y y,c

t )]

≥ E

[
∫ ∞

t=0

e−ρtU(ct)dt

]

where we have used Lemma 8, and exchanging the order of the expectation
and the limit is justified by Fatou’s lemma. This completes the proof.

6 Proof of technical lemmas

In this section we provide the proofs of Lemmas 1, 2 and 3, which mostly con-
cern the existence and uniqueness of a strong solution to the wealth equation
under the optimal controls.

Proof of Lemma 1. Recall that for (x, y) ∈ Da\Db/r we set θ̂(x, y) = 0 and

ĉ(x, y) = by to extend θ̂ and ĉ continuously to the whole of Da. The partial
derivatives of θ̂ and ĉ with respect to x and y are clearly bounded on Da\Db/r

so to show that θ̂ and ĉ are Lipschitz on Da it remains to show that the partial
derivatives are bounded on Db/r ∩ Da. This is equivalent to taking s ≥ a as

defined in (8). Taking partial derivatives of θ̂ and ĉ and rewriting them in
terms of s and J gives

θ̂x = −
µ− r

σ2
[1 − sJ ′′] .

From (8) it is clear that sJ ′′′ is bounded for s ≥ a since sJ ′′′ → 0 as s → ∞.
Hence θ̂x is bounded on Da. Next we have

θ̂y =
µ− r

σ2
[sJ ′′ − J ′(1 − sJ ′′′)]

and once again using (8) it is straightforward to check that sJ ′′ and J ′ are
bounded for s ≥ a since they also tend to 0 as s → ∞. This implies that θ̂y
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is bounded on Da. Hence θ̂ in Lipschitz on Da. Now for ĉ, we have

ĉx =











0 for a ≤ s ≤ 1
s−1−1/R

RJ ′′
for 1 ≤ s ≤ b−R

0 for b−R ≤ s < ∞

ĉy =















1 for a ≤ s ≤ 1
1
R

(

Rs−1/R + s−1−1/RJ ′

J ′′

)

for 1 ≤ s ≤ b−R

0 for b−R ≤ s < ∞.

We just need to check boundedness of ĉx and ĉy on 1 ≤ s ≤ b−R but this is
immediate since ĉx and ĉy are continuous functions of s on this compact set
so are bounded there. Hence ĉ is Lipschitz on Da as well.

Proof of Lemma 2. As mentioned in section 3, proving the existence and
uniqueness of a strong solution to (14) and (15) is equivalent to proving the
existence and uniqueness of a strong solution to (14) and (16). We will show
the latter by adapting the argument used in the proof of Proposition 6.2
in Elie and Touzi [10]. By Lemma 1, we have that θ̂ and ĉ are Lipschitz
on Da. Define Ĉ(x, y) = rx − ĉ(x, y). Clearly, Ĉ is also Lipschitz on Da.
Let K represent a Lipschitz constant for Ĉ. For a fixed y > 0 consider the
function G(t,x) = Ĉ(x(t),max{y, x̄(t)/za}) defined on R+ × C0(R+) where
x̄(t) = sup0≤s≤t x(s). Since Ĉ is Lipschitz, we have that

|G(t,x1) −G(t,x2)| ≤ K{|x1(t) − x2(t)| + |max{y, x̄1(t)/za} − max{y, x̄2(t)/za}|

≤ K

(

1 +
1

za

)

sup
0≤s≤t

|x1(s) − x2(s)|.

This proves that G is functional Lipschitz as defined on page 250 in Protter
[20]. A similar argument shows that θ̂ is also functional Lipschitz. Then the
existence and uniqueness of a strong solution follows from Theorem 7 page
253 in Protter [20].

Proof of Lemma 3. Define the functions δ̂ : R+×R+ → R and π̂ : R+×R+ →
R by

π̂(x, y) =
θ̂(x, y)

x− by
r

δ̂(x, y) =
ĉ(x, y) − by

x− by
r
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for x/y > b/r and set π̂(x, y) = δ̂(x, y) = 0 when x/y = b/r. Recall that θ̂
and ĉ are Lipschitz on Da by Lemma 1, and that θ̂(x, y) = 0 and ĉ(x, y) = by
when x/y = b/r. From this it follows that π̂ and δ̂ are bounded on Da.
Now let (X, Y ) be the unique strong solution to (14) and (15). Define π∗

t =
π̂(Xt, Yt) and δ∗t = δ̂(Xt, Yt). Then we can rewrite (4) as

dXx,θ∗,c∗

t =

(

Xx,θ∗,c∗

t −
bY y,c∗

t

r

)

[(r + π∗
t (µ− r) − δ∗t )dt + σπ∗

t dWt] .

Now we introduce a change of variable similar to that used in Cvitanić and
Karatzas [4]. Define

X̃x,y,θ∗,c∗

t =

(

Xx,θ∗,c∗

t −
bY y,c∗

t

r

)

(Y y,c∗

t )
b

zar−b . (31)

By Itô’s formula,

dX̃x,y,θ∗,c∗

t = X̃x,y,θ∗,c∗

t [(r + π∗
t (µ− r) − δ∗t )dt + σπ∗

t dWt]

+

(

b

ar − b

)

(Y y,c∗

t )
b

ar−b
−1
(

Xx,θ∗,c∗

t − zaY
y,c∗

t

)

dY y,c∗

t .

However, the last term vanishes by (16). We can solve this stochastic differ-
ential equation explicitly to obtain

X̃x,y,θ∗,c∗

t =

(

X0 −
bY0

r

)

Y
b

zar−b

0

× exp

(
∫ t

0

σπ∗
sdWs +

∫ t

0

(r + π∗
s(µ− r) − δ∗s − σ2(π∗

s)2)ds

)

.

This is non-negative almost surely hence from (31) we have Xx,θ∗,c∗

t /Y y,c∗

t ≥
b/r almost surely for all t ≥ 0. Recall that c∗t = ĉ(Xt, Yt). From the definition
of ĉ in (13), we deduce that c∗t ≥ bY y,c∗

t almost surely for all t ≥ 0. Also,
the boundedness of π̂ and δ̂ together with the continuity of X and Y imply
conditions (1) and (2). Putting this all together gives that (θ∗, c∗) ∈ Ab(x, y).

7 The problem is ill-posed for R ≤ R∗

In the standard Merton problem [17], one observes that for R ≤ R∗ (for R∗

as defined in (7)), it is possible to find investment and consumption strate-
gies that give infinite expected utility. It therefore comes as no surprise that
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we observe the same here. This implies that the Merton problem with a
drawdown constraint on consumption is ill-posed for R ≤ R∗. That is, for
R ≤ R∗ it is possible to find investment and consumption strategies such
that (†) does not have a finite maximum.

In the previous sections, we presented and verified the optimal solution for
R > R∗. Now, for completeness, we will construct a class of investment and
consumption strategies to show that (†) does not have a finite maximum
for R ≤ R∗. The consumption strategy that we will construct will be non-
decreasing (equivalent to taking b = 1) thus this will satisfy the drawdown
constraint (5) for all 0 ≤ b ≤ 1. For convenience, we drop the superscripts
on Xx,θ,c

t and Y y,c
t .

Proposition 2. Fix R ≤ R∗, and take (X0, Y0−) = (x, y) ∈ D1/r. Define
(θ, c) = (θt, ct)t≥0 by ct = max{y, λX̄t} and θt = πM(Xt −

ct
r

) for X̄t =

sup0≤s≤t Xs and where πM = µ−r
σ2R

and 0 < λ < rκ2

2rR+2κ2 . Then under this
investment and consumption strategy (θ, c) we have that

E

[
∫ ∞

0

e−ρtU(ct)dt

]

= ∞.

Proof. Under (θ, c) our wealth equation is

dXt =
(

Xt −
ct
r

)

[(

r +
κ2

R

)

dt +
κ

R
dWt

]

. (32)

Using a similar argument as in the proofs of Lemmas 1 and 2 one can show
that there exists a unique strong solution to (32). Note that the consumption
strategy c is non-decreasing so satisfies the drawdown constraint (5) for all
0 ≤ b ≤ 1. Also by continuity of X and X̄ we have that conditions (1) and
(2) are satisfied. Thus (θ, c) ∈ Ab(x, y) for all 0 ≤ b ≤ 1.

Now as we did in the proof of Lemma 3, we modify the change of variable
used in Cvitanić and Karatzas [4]. Define

X̂t =
(

Xt −
ct
r

)

cνt (33)

for ν = λ
r−λ

. Then following the same method as in the proof of Lemma 3
we get that

X̂t = x̂0Γt exp

[

t

(

r +
κ2

R

)]
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where x̂0 = (X0 − c0)c
ν
0 and Γt = exp[ κ

R
Wt −

κ2t
2R2 ]. This implies that

sup
0≤s≤t

X̂s = x̂0Γ̄t exp

[

t

(

r +
κ2

R

)]

(34)

where Γ̄t = sup0≤s≤t Γs. However, note that when c is increasing we have
that ct = λX̄t thus from (33), we also have

sup
0≤s≤t

X̂s =
(

X̄t −
ct
r

)

cνt ≤

(

1

λ
−

1

r

)

c1+ν
t a.s. (35)

since ct ≥ λX̄t almost surely by definition. Equating (34) and (35) gives

ct ≥ c̃0 exp

[

t

(

r +
κ2

R

)(

1

1 + ν

)]

Γ̄
1

1+ν

≥ c̃0 exp

[

t

(

r +
κ2

R

)(

1

1 + ν

)]

a.s.

where c̃0 = [x̂0(
1
λ
− 1

r
)−1]

1

1+ν and in the last inequality we used that Γ̄
1

1+ν

t ≥ 1
almost surely. This gives

E

[
∫ ∞

0

e−ρtU(ct)dt

]

=

∫ ∞

0

e−ρt
E [U(ct)] dt

≥

∫ ∞

0

U(c̃0) exp

[

t

(

−ρ + (1 −R)(1 −R)

(

1

1 + ν

)(

r +
κ2

R

))]

dt

= ∞

since the exponent is positive for our choice of λ since R ≤ R∗.

8 Conclusion

In this paper, we investigate the Merton problem with a drawdown constraint
on consumption. We work with CRRA utility and state our candidate value
function and candidate optimal controls which are then verified. The key
parameter for this problem is the ratio of the investor’s wealth to the running
maximum of past consumption. Under the optimal control, the amount of
wealth in the stock increases non-linearly with this ratio. For the optimal
consumption rule, we observe four different regions of behaviour based on the
value of this ratio. We also present an argument to show that this problem
is ill-posed if the coefficient of relative risk aversion, R ≤ R∗ for a particular
0 < R∗ < 1 which we specify.
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[2] Cherny, V., Ob lój, J.: Portfolio optimisation under non-
linear drawdown constraints in a semimartingale financial model.
arXiv:1110.6289v2 (2011)

[3] Constantinides, G.M.: Habit Formation: A Resolution of the Equity
Premium Puzzle. The Journal of Political Economy, 98 (3), 519-543
(1990)
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A Heuristic derivation of candidate value func-

tion and candidate optimal controls

In this section, we describe the heuristic argument that was used to derive
the candidate value function and candidate optimal controls given by (11),
(12) and (13). We stress that this argument is heuristic. We will make as-
sumptions as necessary to proceed with the derivation and in some places
justification given will be informal. The aim of this argument is just to guess
the value function and optimal controls since we provide a rigorous verifica-
tion argument in section 5.

Essentially, what we will do is derive a set of equations that the true value
function should satisfy. Then we will show that subject to appropriate bound-
ary conditions there is only one solution to this set of equations, which we
take as our candidate value function.

To start, define the value function

V (x, y) = sup
(θ,c)∈Ab(x,y)

E

[
∫ ∞

0

e−ρtU(ct)dt

]

for (x, y) ∈ Db/r. We make the following assumption.

Assumption 1. We assume that V is twice continuously differentiable in x
and continuously differentiable in y with Vx > 0 and Vxx < 0.

Next, as in (21), for (θ, c) ∈ Ab(x, y) define

ξx,y,θ,ct =

∫ t

0

e−ρsU(cs)ds + e−ρtV (Xx,θ,c
t , Y y,c

t ).

By the Davis–Varaiya Martingale Principle of Optimal Control [7], we should
have that ξx,y,θ,c is a supermartingale for all (θ, c) ∈ Ab(x, y), and there exist
optimal controls (θ∗, c∗) (to be found) such that ξx,y,θ

∗,c∗ is a true martingale.
By Itô’s formula,

dξx,y,θ,ct = σθtVxdWt + Lθ,cV dt + VydY
y,c
t

where

Lθ,cV (x, y) = −ρV + Vx(rx + θ(µ− r) − c) +
1

2
σ2θ2Vxx + U(c).
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We deduce that we require Vy ≤ 0 and under the optimal controls (θ∗, c∗)

when Y x,y,θ∗,c∗

t is increasing we must have Vy(X
x,θ∗,c∗

t , Y y,c∗

t ) = 0 almost
surely. We also require

sup
θ∈R,c≥by

[

−ρV + Vx(rx + θ(µ− r) − c) +
1

2
σ2θ2Vxx + U(c)

]

= 0.

Thus we expect the Hamilton-Jacobi-Bellman (HJB) equation for this prob-
lem to be

max

{

Vy, sup
θ∈R,c≥by

[

−ρV + Vx(rx + θ(µ− r) − c) +
1

2
σ2θ2Vxx + U(c)

]}

= 0.

(36)
Now, because we consider CRRA utility, we can use scaling to reduce to a
one-dimensional problem. Define v(z) = V (z, 1) for z ≥ b/r. We have the
following result.

Proposition 3. V (x, y) = y1−RV (x/y, 1) = y1−Rv (z) where we define z =
x/y.

Proof. Take λ > 0. From the linearity of wealth dynamics (4) we have that

(θ, c) ∈ Ab(λx, λy) ⇔ (θ̃, c̃) ∈ Ab(x, y)

where (θ̃, c̃) = (θ/λ, c/λ). Now observe that

V (λx, λy) = sup
(θ,c)∈Ab(λx,λy)

E

[
∫ ∞

0

e−ρt

(

c1−R
t

1 −R

)

dt

]

= sup
(θ̃,c̃)∈Ab(x,y)

E

[
∫ ∞

0

e−ρt

(

(λc̃t)
1−R

1 −R

)

dt

]

= λ1−R sup
(θ̃,c̃)∈Ab(x,y)

E

[
∫ ∞

0

e−ρt

(

c̃1−R
t

1 −R

)

dt

]

= λ1−RV (x, y).

Taking λ = 1/y gives the result.

Proposition 3 suggests that the key parameter in this problem is z = x/y, or
in terms of processes Zx,y,θ,c

t = Xx,θ,c
t /Y y,c

t , the ratio of wealth to the running
maximum of past consumption. We guess that there is a type of threshold
behaviour which depends on the value of this ratio. To be precise, we assume
that the first term in the HJB equation is equal to zero if and only if z > za
and that the second term is equal to zero if and only if z ≤ za for some za to
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be determined. The intuitive reasoning for this is that the first term is only
zero when we increase Y y,c∗

t under the optimal controls (θ∗, c∗) which would
only happen if Zx,y,θ∗,c∗

t were large. This is because large Zx,y,θ∗,c∗

t means
that our wealth is very large compared to the running maximum of past con-
sumption, so we have more than enough wealth to maintain consumption at
its current maximum, so it is in our best interests to raise Y y,c∗

t and increase
consumption from then on.

Consider the region z ≤ za first, which corresponds to the second term in
the HJB equation. We can divide this into two maximisation problems. The
first is

sup
θ∈R

[

θ(µ− r)Vx +
1

2
σ2θ2Vxx

]

which is maximised by

θ̂(x, y) = −
µ− r

σ2

Vx(x, y)

Vxx(x, y)
(37)

The second maximisation is

sup
c≥by

{U(c) − cVx}

which is maximised by

ĉ(x, y) =











by for b/r ≤ x/y ≤ zb−R

(Vx(x, y))−1/R for zb−R ≤ x/y ≤ z1

y for z1 ≤ x/y ≤ za

(38)

where zb−R = v′(b−R) and z1 = v′(1).

For z ≥ za, recall that we assume a threshold-type behaviour so we guess
that the optimal strategy is to immediately increase consumption to a new
maximum so that z falls back to the threshold value. In more precise terms,
we guess that the optimal strategy is to take

ĉ(x, y) =
x

za
for za ≤ z < ∞. (39)

Substituting (37) and (38) into the (36) and using Proposition 3 to write
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everything in terms of v and z gives

0 = −ρv + rzv′ − 1
2
κ2 (v

′)2

v′′
+ U(b) − bv′ for b/r ≤ z ≤ zb−R

0 = −ρv + rzv′ − 1
2
κ2 (v

′)2

v′′
+ Ũ(v′) for zb−R ≤ z ≤ z1

0 = −ρv + rzv′ − 1
2
κ2 (v

′)2

v′′
+ U(1) − v′ for z1 ≤ z ≤ za

0 = (1 −R)v − zv′ for za ≤ z < ∞.

(40)

By Proposition 1, for all (θ, c) ∈ Ab(x, y) we have (Xx,θ,c
t , Y y,c

t ) ∈ Db/r almost

surely for t ≥ 0. At the boundary where Zx,y,θ,c
t = b/r, by (4) we see that

if θt 6= 0 then the effect of the dWt term would mean that with positive
probability Zx,y,θ,c

t would fall below b/r immediately. Thus if Zx,y,θ,c
t ↓ b/r

we must have θt ↓ 0 almost surely so that all our wealth is in the bank
account and to maintain the drawdown constraint we consume the interest
rXx,θ,c

t = bY y,c
t which keeps Zx,y,θ,c

t constant at b/r. This reasoning holds
for the optimal controls as well which gives us two boundary conditions at
z = b/r. The first is

v(b/r) = U(b)/ρ (41)

and we also have θ̂ ↓ 0 as z ↓ 0 which by (37) and Proposition 3 is equivalent
to

v′(z)

v′′(z)
↓ 0 as z ↓ b/r. (42)

To solve (40) subject to these boundary conditions we transform to dual
variables. Define

J(s) = sup
z>b/r

{v(z) − sz}. (43)

By Assumption 1 and Proposition 1, we have that v′ > 0 and v′′ < 0 so
the supremum in (43) is attained for z = (v′)−1(s). Also since v is twice
continuously differentiable, so is J . Using the link between the derivatives of
v and its dual J (we refer the reader to Rockafellar [22] for more details on
dual transforms) we can rewrite (40) as

0 = (1 −R)J + RsJ ′ for 0 < s ≤ a
0 = −ρJ + (ρ− r)sJ ′ + 1

2
κ2s2J ′′ + U(1) − s for a ≤ s ≤ 1

0 = −ρJ + (ρ− r)sJ ′ + 1
2
κ2s2J ′′ + Ũ(s) for 1 ≤ s ≤ b−R

0 = −ρJ + (ρ− r)sJ ′ + 1
2
κ2s2J ′′ + U(b) − bs for b−R ≤ s ≤ sb/r

(44)
where sb/r = v′(b/r). We guess that sb/r = ∞ which makes intuitive sense

because if Zx,y,θ∗,c∗

t ever hits b/r then by the above reasoning Zx,y,θ∗,c∗

t is held
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constant at this value and we have no choice but to consume at the minimum
allowed level from this point onwards. Thus any deviation from this point
would be significantly more preferable than remaining there, which would
suggest that v′(b/r) = ∞.

Rewriting the boundary conditions (41) and (42) in terms of J and s gives

sJ ′′(s) → 0 as s → ∞ (45)

and
∣

∣

∣

∣

J(s) −
U(b)

ρ
+

b

r
s

∣

∣

∣

∣

→ 0 as s → ∞. (46)

The boundary conditions (45) and (46) together with the continuity of J ,J ′

and J ′′ imply that there is a unique solution to (44) which is given by (8).

We can recover v by taking the dual of J (see Rockafellar [22] for more
details)

v(z) = inf
0<s<∞

{J(s) + zs}

and taking V (x, y) = y1−Rv(x/y) gives our candidate value function as given
in (11).

Our candidate investment and consumption strategy is given by (37), (38)
and (39).
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