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Abstract

Most GARCH-type models follow Engle’s (1982) original idea of modelling the volatility of asset returns
as a function of only past information. We propose a new model, which retains the simple GARCH struc-
ture, but describes the volatility process as a mixture of past and current information. We show how the new
model can be interpreted as the special case of a Stochastic Volatility (SV) model, which provides therefore
a link between GARCH and SV models. We show that we are able to obtain better volatility forecasts than
the standard GARCH-type models; improve the empirical fit to the data, especially in the tails of the dis-
tribution; and make the model faster in its adjustment to the new unconditional level of volatility. Further,
we offer a much needed framework for specification testing as the new model nests the standard GARCH

models.
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1 Introduction

Volatility is widely used as a proxy for the risk associated with a financial asset, see e.g.
French et al. (1987). Reliable estimation and forecasting of volatility is therefore crucial
for many financial activities, such as risk management, portfolio choice and asset pricing.
There are several main approaches to modelling the volatility of discrete financial time
series: GARCH models (Engle, 1982; Bollerslev, 1986; Ding et al, 1993; Hansen et al., 2011,
among others), Stochastic Volatility (SV) models (see Shephard, 2008 for overview), and
hybrid models, e.g. Meddahi and Renault (2004). A main conceptual difference between
the above approaches stems from the information structure they incorporate. Univariate
GARCH models assume that the volatility of asset returns, oy, is a function of past infor-
mation only, i.e. 0, is F;_;—measurable, where F,_; is the sigma-algebra induced by the
history of returns up to time ¢t — 1. SV models assume that o, is G,—measurable, where G, is
the sigma-algebra induced by the history of returns as well as by the history of unobserved
random shocks up to time ¢. The difference in the incorporated information structure is
also in their nature: while GARCH models incorporate only past internal information (i.e.
information generated only within the model itself) and are therefore deterministic, SV
generate a stochastic volatility process by allowing for external information in the form
of unobserved random shocks that are independent from the shocks governing the re-
turns process. As a result, SV models can be more flexible in fitting the data, however this
comes at the cost of higher complexity involved in their estimation and inference. Con-
trasting with SV models, GARCH models are observation-driven. Hence they come with
the advantage of having available many estimation methods, Quasi-Maximum Likelihood
(QML) being the most popular, which accounts for their wider use among practitioners.
First remarked upon by Politis (2007), by not using all available internal information,
in particular the current return, GARCH models make an inefficient use of information

when forecasting the volatility of returns. An important implication of this is that GARCH



models are poorly suited for situations of rapid changes in financial markets, for example
when volatility changes rapidly to a new level, see e.g. Andersen et al. (2003), and Hansen
et al. (2011). Until now it was assumed that all volatility models can be classified as either
parameter-driven or observation-driven (see e.g. Cox, 1981 and Sheppard, 1996), with
a clear separation between the two. Since most GARCH models are observation-driven,
it comes with a necessary condition that the process is modelled strictly in terms of the
past observed information. Hence this limitation of GARCH models was believed to be
inherent and unavoidable.

In this paper we show that it is possible to efficiently utilize all available internal infor-
mation in GARCH models, in particular incorporating the current return. We demonstrate
that by doing so, we (i) can account for rapid changes in the unconditional level of volatil-
ity as the conditional distribution of returns has a time-varying kurtosis; (ii) outperform
standard GARCH models in terms of both short-run (1 and 5 days ahead) and long-run
(10 and 15 days ahead) out-of-sample volatility forecasts; (iii) provide a better empirical
tit to the data, especially in the tails of the distribution; (iv) provide a conceptual link be-
tween SV and GARCH models; and (v) offer a much needed framework for specification
testing of the standard GARCH models, which are nested in our framework.

To put things into context, consider the following model
7 =&)X, M is F; — measurable, (1)

where r; is the return series, ¢, are i.i.d. random variables such that E (¢;) = 0, E (¢?) = 1,
and F; is the information set available at time ¢. Here we model the volatility as a mixture
of past as well as current information, i.e. \; is ;—measurable. Compared to GARCH
models, we use all information up to time ¢ instead of time ¢t — 1. Compared to SV models,
JF: contains only one source of randomness shared by the returns and volatility processes,

which will allow us to retain a QML framework. The new model therefore can be thought



of as a link between GARCH and SV models, as it nests the GARCH model as its special
case, yet models the volatility process in the spirit of SV models where the two sources of
randomness are perfectly correlated. While our model combines the advantages of both
GARCH and SV models in a unified framework, it is not strictly a GARCH nor a SV model,
but rather it is in a new class of its own. We call this new model the “Real-time GARCH”
model (RT-GARCH for short), indicating the fact that the most “current” information is
contributing to the volatility process.

An important advantage of this framework is that we allow the shape of the conditional
distribution of returns to be time-varying. This has two main implications. Firstly, unlike
GARCH models where the conditional kurtosis of the error terms simply translates into
the kurtosis of the returns, our model’s conditional kurtosis is time-varying. Secondly, the
conditional density of returns is no longer a scaled normal density even when the error
term has a Gaussian density. Our density function has an extra shape parameter which
determines the “peakedness”, and/or thickness of the tails, of the returns distribution.
This allows our model to be better capture tail behaviour of the returns. This shall play an
important role for the precision of our out-of-sample Value-at-risk (VaR) and short- and
long-run volatility forecasts.

Politis (2007) makes the first investigation of the implications of information loss for
forecasting volatility. He develops a novel model-free normalizing and variance stabiliz-
ing (NoVaS) transformation of the initial time series of returns, by incorporating the cur-
rent squared returns into the conditional variance process in order to improve volatility
forecasts. Being a model-free specification, parameter estimates and statistical properties
are not available. Thus direct comparison of the theoretical implications of this specifica-
tion with existing discrete-time volatility models is not possible, and the important ques-
tion of whether including current information in a more structured model would provide
any improvements over the standard GARCH models was not addressed. We answer this

question by studying the statistical properties and the empirical performance of the RT-



GARCH model. We first show that it is possible to incorporate current information into
GARCH-type models while retaining interpretation, and a good description of the key
characteristics of financial data. We show that the new information, i.e. the current real-
ization of the current return (or some function of thereof), can be viewed in two ways: as
a change in the information set, and as providing the conditional density of returns with
an extra shape parameter, making it therefore time-varying.

In our empirical study, we estimate our model on three datasets: IBM, GE and S&P
500 daily returns which span from the 2nd of January 1998 (28th of January 2003 for
S&P500) till the 1st of December 2016. We find that accounting for current information
in the volatility process plays an important role along several dimensions. Firstly, the RT-
GARCH model outperforms standard GARCH-type models in terms of producing better
short-run (1 and 5 day ahead) and especially long-run (10 and 15 days ahead) out-of-
sample volatility forecasts. In particular, we compare 1-, 5-, 10- and 15-step ahead volatil-
ity forecasts with those of the GARCH(1,1) and GARCH(1,2) with standard normal and
Student-t errors, APARCH(2,2) with Student-¢ errors, as well as NoVaS methodologies of
Politis (2007). To evaluate the competing forecasts, we perform Hansen’s (2011) Model
Confidence Set (MCS) test and provide evidence that the RT-GARCH models always lie
in the MCS for all horizons, while standard GARCH models are only occasionally in-
cluded in the MCS for some datasets and /or loss functions. In particular, the MCS always
contains the RT-GARCH model, and only for some datasets, the APARCH model with
Student-t innovations. Moreover, the baseline RI-GARCH model always outperforms the
standard GARCH(1,1) model for all horizons across all datasets. Hansen’s (2005) Test for
Superior Predictive Ability (SPA) confirms these results by showing that the RI-GARCH
model (or variation of thereof) is not outperformed by any of the competing models. We
also perform an evaluation of the forecasting performance of all models on 2 different
subsamples: pre- and post-crisis periods. We show that during the crisis period, the RT-

GARCH with leverage and the RT-GARCH with leverage and feedback models outper-



form all other models for all stocks and all horizons. This result emphasizes that during
turmoil times, accounting for leverage and especially allowing for a time-varying kurtosis
is crucial for getting precise forecasts. Further, using VaR as an alternative risk measure-
ment loss function, we show that our model has the correct conditional and unconditional
coverage when compared to the other models, and especially when compared to the stan-
dard GARCH(1,1) model. Secondly, being a generalization of the standard GARCH(1,1)
model, the RT-GARCH model provides a better fit to the data when compared to the stan-
dard GARCH(1,1) model along several important dimensions. In particular this is most
evident in the tails of the standardized residual density implied by the estimated model.
Lastly, we show how the RT-GARCH model can be used for specification testing of the
standard GARCH models. This specification test can be interpreted as a test for constant
conditional kurtosis against a time-varying one. Applied to IBM, GE and S&P500 data,
we find that all of them have a time-varying conditional kurtosis.

The remainder of the paper is structured as follows. In section 2 we introduce the
RT-GARCH model and provide an interpretation of the model as well as its relation to
GARCH and SV models. In section 3 we present the main results, including the condi-
tional density function, and the strict and weak stationarity conditions. In section 4 we
address the issue of leverage in the RI-GARCH model. Section 5 discusses some results
of the estimation theory and the specification test. Section 6 shows how we use the RT-
GARCH model to get [-step ahead volatility forecasts. In section 7 we provide an applica-
tion to daily IBM, GE and S&P500 data. Section 8 concludes. All proofs are presented in
the Appendix.



2 RTI-GARCH

2.1 Interpretation and relation to GARCH models

In this section we formally introduce the RT-GARCH model. In order to analyze the role
of current information for volatility modelling, we first need to define what is to be taken
as “current information”. Politis (2007) assumes that current information is represented
by the current squared return. However, this poses a problem: if one is to forecast the
future conditional variance at time ¢ + 1, the future return, r,;,, will be required but is
unobserved. One way to bypass this problem is to consider some function of the current
return that won't require the knowledge of unobserved future returns when forecasting. It
turns out that one possible candidate for doing so is the current return scaled by its volatil-
ity. In GARCH-type models this translates directly into the error term, ¢, which generates
the return process. This solves the forecasting infeasibility issue as only the second condi-
tional moment of the error term will be required for forecasting, which is known for all ¢,
provided the standard moment conditions on the error term. More precisely, consider the
following joint process (r; A\?):

T = A€t (2)

2

-
N =a+BN_ +yri,+¢ /\_tgu
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(o, B,7,9) >0, (3)

where r, is the return series, ¢, are i.i.d. random variables with a density function f. (-)
such that F (¢;) = 0, E (¢) = 1. The true parameters are denoted by ay, 5y, 70 and . This
model nests the standard GARCH (1,1) model which can be obtained by setting ¢ = 0.
We label the new volatility process )\? instead of o7, as eq.(3) does not correspond to the
conditional variance of returns in this system of equations, i.e. var[ri|F_1] # A as \;

is not independent of ¢, any longer. Note also that the choice of a particular function



of ¢, i.e. €, is only one of many possible ones subject to the nesessary condition that
A? > 0. In particular, functions |¢/|, €/, among others, are possible. Our decision to choose
a squared error term will become apparent later when we discuss the interpretation and
the implications for the conditional distribution of returns.

Although not directly related to the MIDAS approach of Ghysels et al. (2005, 2006), as
we use only one frequency, it shares a similar intuition in the sense of assigning different
and, in our case, time-varying weights to returns on different days. In particular, it can be

shown that eq.(3) can approximately be written in the following way:
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where b; 1 = a+X\;_1+7r7_ ;. The derivation can be found in the Appendix. Compared to
the standard GARCH models, the weights are time-varying and depend on past volatility,
which can be approximately taken to be b,_;. The intuition of this weighting scheme is as
follows. For the current return r7, the weight is inversely proportional to b;_;, i.e. the
weight is bigger for a smaller past return and is smaller if the past return is large. For
any r;_;, j > 1, the weight consists of two parts: the usual "GARCH weight", given by
76771, and an additional time-varying weight (57¢)/b;—1—; which assigns an extra weight
if a particular realization of r;_; is in the tails of the distribution.

In order to understand what difference it makes to enlarge the information content
of the volatility process, consider the following thought experiment which we have bor-
rowed from the presentation of the paper by Hansen et al. (2011). Suppose that o7 is such
that the volatility is o, = 20% for ¢t < T, but then suddenly jumps to the new level of
o = 40% for t > T. The implication for the GARCH(1,1) model is that for any £ > 0 it



holds that

E (7’%+k:) =L (U%M) =a+vE (T%Jrkfl) + 5 [a + BE (J%Jrkfl) +~FE (Tgmkq)} — =

~1-3 fﬁ +04]ZOWE(T%+MJ) = 1f‘6 77 (0% + 175 (20%)"

Using similar derivation steps for the RI-GARCH model with the important exception

that E (r7) = E (A\}) + ¢n, n = E (¢}) — 1 we similarly have:

_ate(3-28)  1-p B
Blrin) = =15 t 175 W% + 7 —5(20%)°,

where we took ¢; ~ N(0,1). In this thought experiment we ask the following question:
how many days following the jump will it take for the volatility process to adjust to its

new level? The answer is presented in Figure 1(a).
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Figure 1:  (a) Time scale of the volatility adjustment. For both graphs the parameter vector
[a, B, 7, ¢]is set to [0, 0.92, 0.073, 0.035 ] for the RT-GARCH model, while [a,f,7] =
[0,0.95,0.045] for the standard GARCH(1,1) model. (b) News impact curves for different values of ¢. For
both graphs parameter values are in line with the ones from the estimated daily GE stock returns.



For the standard GARCH(1,1) model it takes approximately 100 days (more than 3
months) to approach the level of 39%. For the RT-GARCH model it takes a little less than
40 days to adjust to the new level of volatility. Although still slow the RI-GARCH model
is at least two times faster in its speed of adjustment to the new level of volatility after a
sudden jump when compared to the standard GARCH(1,1) model.

Another measure of how new information affects the volatility of returns is given by
the “news impact curve”, as defined by Engle and Ng (1993). For the RI-GARCH model

the news impact curve is given by the following equation:

- 5
b+1/b +4g07°f) )

E [} | F] oz+<pf£—|—ﬁ< 5 +r, (5)
with k = Ele}f] and b = (o + By + ry¢)/(1 — (B + 7)) being the unconditional level of
bi_1 = a+ B, +7r7_,. Note that this news impact curve is no longer simply a quadratic
function of r as in the case of standard GARCH(1,1) model. However, for reasonable val-
ues of the parameter values the last term in eq.(5) dominates. In Figure 1(b), we compare
news impact curves of the RT-GARCH model for different values of ¢ with the news im-
pact curve of the standard GARCH(1,1) model, which corresponds to the case of ¢ = 0.
For a fixed value of ¢ the volatility in the RT-GARCH model responds much more to ex-
treme news when compared to the standard GARCH(1,1) model. For larger values of ¢
this response becomes even larger, see eq.(4) for the weighting interpretation. In our base-
line model good and bad news have the same weighting. We address the leverage and

feedback issue and how it can be incorporated in the baseline model in Section 4.
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2.2 Relation to SV models

To see how our model relates to SV models we write the simplest possible RI-GARCH

and SV models, which is enough to demonstrate the point. Consider the following;:

)
Ty = 0t
T = A€y
sz2+1 =W+ Y241,
M= a+ per, RT — GARCH SV
2 ~ 1id(0, 02), n ~ iid(0, 02),
€ ~~ sz((), 1)

corr(zip1,m) = p ¥V t]

After simplifying both models as above, the difference becomes immediately clear. SV
models assume that the process for returns, r,, is driven by two random shocks, z; and 7,.
A non-zero contemporaneous dependence between shocks is allowed, which is thought
to pick up the leverage effect, see Yu (2005) for the definition of the leverage effect in SV
models. Note that the inter-temporal dependence between shocks can also be allowed, see
also Yu (2005) for a discussion, however this can lead to returns that are not martingale
difference sequences and therefore not consistent with the efficient market hypothesis.
The RT-GARCH model assumes that ¢;, a single random shock, is common to both r; and
its volatility process \;. Our model is therefore a special case with p = 1 as the correlation
of the shocks in the SV framework. This common shock only contributes to the volatility
whenever it is large in absolute value. One therefore can think about it as really “bad”
(in terms of both magnitude and sign) news that will be immediately incorporated in
the volatility process. As mentioned before however, the RI-GARCH model is neither a
GARCH nor a SV model, but something in between. To formally define where in-between
our model lies, one would need to derive the continuous-time limit, which is currently left

for future research.
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3 Main Results

In this section we derive some statistical properties of the new model. We start with the
unconditional moments of r7 and \?. From eq.(2)-(3) the unconditional expectations of r7

and )} are given by:

Elr{] = a+ BEN_ ]+ VE[r{,] + ¢Ele/]

and

EP‘?] = E[a + 5)‘?—1 + 77}2—1 + 9063] = o+ 5E[/\?—1] + WE[TtQ—l] + . (6)

This now gives us a link between the first moments of \? and r?:
Elr{] = EIN] + ¢(Elg] - 1). )

When, for instance, ¢; are i.i.d. N(0,1) random variables, the above relationship simply
becomes E[r?] = E[M\] + 2¢. We next derive the conditional density of returns together
with the general formula for the jth conditional moment, followed by a discussion of strict
and weak stationarity conditions for 77 and A?. All proofs for this section’s results can be

found in the Appendix.

Theorem 1. Let ¢, be i.i.d. symmetric around zero random variables such that E(e;) = 0 and
var(e;) = 1; and let (ry, \?) evolve according to eq.(2)-(3). Denote by Fy_1 := o(ry,s <t —1)
the o-algebra induced by the history of returns up to time t — 1. Denote the parameter vector by
0 = (v, B,7,¢) and the true parameter vector by 6y = (aw, Bo,Y0,¢0)- Then the conditional
probability density function of the return series, f,(r), is given by

r
fr(r‘f},fﬁ = d(ﬁ btfbe) b%—l n 4r2(pf€<d(r7 btflae))v (8)
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where f.(-) is the probability density function of €, while d(r,b,_y,0) and b,_, are given by the

following equations

02 FArZo—bi_,
9 \/ o for 9#0
r/\/bi—1, for ¢=0

d(r, b1, )

with by_y = a+ BN, + ~yr?_,. Note that e, = d(ry; by_1, 0y). Moreover,

1
lim ! bi—1 and lim fr(r|}t—1) =
r— 0

r—0 d(rv bt—17 9) - bt,1

fe(0).
The conditional cumulative distribution function of returns is given by:
F(T|~Ft—1) = F€ (d(?", bt—17 9)) )

where F.(-) is the cdf of €;. The conditional j" moment of returns, where j € Z, is given by the
following formula:

E[r]|Fia] = b2 | E (d(r,bi—1,0)7) + %bj—‘pE (d(r,bi—1,0)"2) | . (10)
t—1

Remark 1. From eq. (10) it can be noticed that for returns to be a martingale difference
sequence, it is required that the third moment of ¢, is also zero (hence our assumption on
the symmetry of the error term in the Theorems). Although definitely a stronger require-
ment than just E(e;) = 0, we believe it is still a realistic assumption as it will hold for a
variety of distributions for ¢;. For instance, this requirement does not rule out the densities
that are multimodal as long as they are still symmetric. In particular, it will hold for the
commonly used Gaussian or Student-t distributions for ;.

Remark 2. Note that the distribution related the conditional density in eq.(8) has now
a time-varying kurtosis. Therefore, the parameter ¢ can be thought of as an extra shape

parameter, representing the thickness of the tails. As a special case this distribution nests
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the standard Normal distribution with a constant kurtosis of 3.

Remark 3. Conditional on F;_;, r; is an odd function of ¢;, since ¢, is an odd function of
¢, and )\, is an even function of ¢;. It then automatically follows that the conditional, and
hence unconditional distribution of r;, is symmetric.

Remark 4. The conditional density of the RT-GARCH model in eq.(8) nests the con-
ditional density of the standard GARCH(1,1) model as its limiting case at » = 0. The
intuition is as follows: standard GARCH(1,1) model is a special case of the RI-GARCH
model whenever ¢ = 0, then d(r) simplifies to 7/1/b;_; and eq. (8) boils down to the stan-
dard GARCH(1,1) density, or ¢, = 0, which is equivalent to the condition of r, = 0. In this
case the limit of eq.(8) as » — 0 is again the standard GARCH(1,1) density. Similarly, the
conditional moments in eq.(10) nest the GARCH(1,1) model’s conditional moments as its

special case.

Remark 5. It is also interesting to note another important difference with the GARCH(1,1)
model for conditional moments of order j > 2. Recall that for the standard GARCH(1,1)

model the standardized conditional kurtosis of returns is just
2
E[ri|Fia] [ (B [rf|Fia])” = b B 6] /b = E 6],
meaning it is simply the standardized kurtosis of the error term, and therefore constant

over time. For the RT-GARCH model we have

b2 E e} + 20b, 1 E [€8] + ©2E [¢8
B[IF] [ (B 17 = Ml 2B el R
(bi—1 + @E[€}])

which makes it now time-varying. This explains why we opted to call ¢ an additional
shape parameter, as it has a direct relationship to the standardized conditional kurtosis of
the returns. In section 5 we discuss how this can be used for specification testing. Further
note that the conditional distribution of the return series is no longer just the scaled ver-

sion of the standard normal density. In particular, it now has an extra shape parameter ¢,
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which, as we will describe below, will determine the degree of peakedness and/ or thick-

ness of the tails of the distribution. More precisely, the return process described by the

RT-GARCH with normal innovations is now able to account for heavier tails compared to

the standard normal distribution. To highlight this point even further, Figure 2 displays

the probability density function of the RT-GARCH with f(-) ~ N(0, 1) against the p.d.f. of

the standard normal distribution and demonstrates that the density of the general model

is also able to model heavier (than the standard normal) tails of the distribution without

resorting to an arbitrary distribution of the error term.
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Figure 2: Conditional probability density function for different values of unconditional volatility. The parameter
vector =[ «, B, 7, ¢| issetto[ 0.003, 0.9, 0.04, 0.02 ), which are typical parameter values.
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[a, B, 7, ] issetto[ 0.003, 0.9, 0.04, 0.02 |', which are typical parameter values.

The reason as to why the RT-GARCH model is able to reproduce heavy tails of the re-
turns conditional distribution stems from the fact that the additional parameter ¢ controls
for the thickness of the tails of the corresponding distribution as the conditional kurtosis
in the new model is time-varying. From the Figure 3 we can see that the larger the value of
¢ is the heavier are the tails of the distribution. Besides controlling for the thickness of the
tails of the distribution, parameter ¢ allows for the adjustment of the volatility estimate,
either up or down depending on the “sign” of the news, allowing the conditional variance
process to be more dynamic.

After some preliminary graphical results we now turn to describing some further sta-
tistical properties of the RI-GARCH model. In particular, we derive conditions for the
joint process (14, \?) to be strictly stationary. Establishing this result is important for de-
veloping estimation theory for the QMLE. In particular, establishing the strict stationarity

conditions is important for proving that the joint process (r, A7) is geometrically ergodic
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and S-mixing (for proofs of these results see Smetanina (2017b)), which in turn is neces-

sary for establishing the asymptotic normality of the QMLE.

Theorem 2. Let ¢, be i.i.d. symmetric around zero random variables such that E(e;) = 0 and
var(e;) = 1; and let (14, \?) evolve according to eq.( 2)-(3). Let o, 3,y > 0, and ¢ # 0. If the

following conditions are satisfied
—oo§Elog|ﬁ+fyeg‘ <0 E(log!oz+g063‘)+<oo, (11)

then the process (ry, \?) is strictly stationary.

We next establish the weak stationarity conditions for r? and \? processes. These re-
sults will be later used to derive the forecasting formulae for the conditional variance of
returns. In addition, the unconditional level of volatility is needed if one chooses to use

variance targeting for the estimation of the parameter vector.

Theorem 3. Let ¢, be i.i.d. symmetric around zero random variables such that E(e;) = 0 and

var(e;) = 1; and let (ry, \}) evolve according to eq.( 2)-(3). Then under the following conditions:

B+v<1 (case 1)
ate+yp(Elg]-1)>0

or
B4+vy>1 (case 2)
ate+yp(Elg]—1) <0

the process \? is weakly stationary and its first unconditional moment is given by

a+¢+yp(Ele] 1)
1—(B+7) '

EN] = (12)

Given the relationship, described in eq.(7), between E[r?] and F[)\?|, we can write down

the conditions for weak stationarity of r7.
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Theorem 4. Let ¢, be i.i.d. symmetric around zero random variables such that E(e;) = 0 and

var(e;) = 1; and let (ry, \}) evolve according to eq.( 2)-(3). Then under the following conditions:

f+v<1 (case 3)
a+ eE(ef) + B (1 — E(g)) > 0

or
f4+v>1 (case 4)
o+ E(ef) + B (1 - B(€)) <0

1y is weakly stationary and its second unconditional moment is given by

a+@E(ef) + pf (1 — E(€}))
1—(B+7) '

E[r}] = (13)

In addition it also holds that:

cov(ry,rs) =0, t#s.

Let us now turn to the unconditional fourth moment of the return series r;, E[r{], which
is an important measure of the tail behaviour of the return distribution. Detailed deriva-

tions are presented in the Appendix, here we present the resulting expression for E[r}].

Theorem 5. If the process (ry, \}) evolves according to eq. (2)-(3) and e, are symmetric
around zero i.i.d. random variables such that E (e;) = 0 and var(e;) = 1, then ry is fourth moment

stationary if

(14)

with the unconditional fourth moment given by

2

_ &+ EN]& + 287 EM]]

Elr}
il 1=y

9

where ; = @E[e]] and constants & and &, are given by & = oy + ps + 2aps + 4oy (o +

Bus + pe) > 0and & = puy(2a8 + 5% + 20y + 2u6(y + B)) > 0 and E[N?] is given by eq. (12).
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Remark 6. In the case of Gaussian error terms, condition (14) simply becomes ? < %

which is exactly the same as in the standard GARCH(1,1) case.

4 Leverage and volatility feedback effects

The RT-GARCH model described by eq. (2)-(3) has no leverage effect, meaning that when
errors are symmetric about zero, E(r;) = 0 and cou(rf,r;) = 0 Vj. However, there is
well documented empirical evidence, see e.g. Black (1976), Christie (1982), Engle and Ng
(1993), that many financial time series exhibit the leverage effect, i.e. the contribution to
the volatility of negative shocks to the stock prices is far greater than that of the positive
shocks of the same magnitude. As a result of this empirical evidence, most discrete and
continuous-time volatility models were extended to incorporate this feature. For discrete
time models see Nelson (1991), Engle and Ng (1993), Glosten et al.(1993) among others.
For continuous-time models, see Christie (1982), Yu (2005), Bandi and Reno (2012), Ait-
Sahalia et al. (2013) and Wang and Mykland (2014). For fully nonparametric way of
estimating and testing the leverage hypothesis, see also recent work by Linton et al. (2016).

We proceed by incorporating the leverage effect in the fashion of Glosten et al. (1993),
i.e. by acknowledging the different effect of positive and negative news on the conditional
variance of returns. Note however that, unlike for all standard GARCH-type models, the
most recent information in our case is represented by current shocks ¢;. We therefore refer
to “leverage effect by differentiating the effect of positive and negative values of ¢, on A7
Therefore the baseline model in Section 2 can be extended to account for leverage effect as

follows:

T = A€t
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and

A=+ BN+ 4 pi€ L 50) + 926, L <o)

It is also interesting to differentiate between the effect of positive and negative values
of past returns on the conditional volatility. In the standard GARCH-type models this is
referred as “leverage effect” as this would be the most recent information effecting the
conditional volatility. Given the differently defined leverage effect in our model we refer
to the different effects of the past postive and negative returns on conditional variance
as “feedback effect”. More precisely, the RT-GARCH model with leverage and feedback

effects is given by

T = A€ (15)

and

A =a+ BN+ i L0 + 2l Lin<o) + 016, L (e0) + 026, L(e,<0)- (16)

In Figure 4 we compare the news impact curves of the GJR-GARCH(1,1) model of
Glosten et al.(1993) with the RI-GARCH model with leverage and the RI-GARCH model
with leverage and feedback, all estimated on the daily IBM data. For both specifica-
tions of the RT-GARCH model, volatility tends to respond more to negative news than
in GJR-GARCH model. Interestingly, the RTI-GARCH model with leverage and feedback

responds slower to negative news than the RT-GARCH just with the leverage effect.
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Figure 4: The figure displays the news impact curves for three models, estimated on the daily IBM data.

All theorems in section 3 hold for both extensions with slight modifications. For reasons

of brevity we defer these to the Supplementary Material for this paper.

5 Outline of the Estimation Theory

In this section we discuss some results of the QMLE analysis. We denote by 6 = (a, 3,7, )’
the parameter vector and the corresponding true parameter vector by 6, = (o, 50, %0, o) -
For the purpose of estimation we adopt a Gaussian specification, such that the log-likelihood

function can be written as follows:

where

1 1 bi—1(0 d?(r,bs_1,0
lt(9>:_élog(Qﬂ-)_§df(7’,bt—179>+10g<\/t 1(6) + odi (1, bis, ))7

bt_l(e) ‘I— 2<pd%(7’, bt—l; 0)
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with b,_1(0) = a + BA?_, + yri,, and d2(r,b,—1,0) is given in eq.(9). Note also that if ¢ is
set to zero we are again back to the standard GARCH(1,1) log-likelihood function. The
QMLE of 6 is then defined as any measurable solution §T of 5T = arg max,.g Lr(0), where
© denotes the parameter space. Given that the RT-GARCH(1,1) model nests the standard
GARCH(1,1) model, it can be expected that the asymptotics theory for QMLE will be
a generalization of some sort for the standard GARCH(1,1) model. In fact, this turns
out to be true, however the analysis is non-trivial and requires a lengthy derivations. In
addition, we believe that the entire analysis is beyond the scope of this paper as it presents
an interest of its own. The details therefore can be found in Smetanina (2017b), and here
we provide only a brief discussion of the results. Importantly, the joint process (17, A7)
remains to be a Markov chain and therefore the theory for Markov models, developed
by Meitz and Saikkonen (2008) applies. This allows one to establish the ergodicity and
f—mixing of the process. After the dependence structure is established, in Smetanina
(2017b) we show that the strong consistency of § can be established by adopting the theory
by Francq and Zakoian (2004). In addition, we also show that the score function is still a
martingale difference sequence, therefore the martingale CLT, see e.g. Hall and Heyde

(1980), can be applied to show:
¢T(§—%)E%Max%y

where V) = A"'BA~! and

1 0?log L7(0) 1 dlog Ly(0) 0log Lr(6)
A== [ 2000 } and B = 7Es, { 0 00"

The exact expressions for Vj can be found in Smetanina (2017b). Finally, provided that

RN 0y and 179 2 v, the feasible version is given by:
VAT (5— 90> L N(0,1).

22


http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2809055&download=yes
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2809055&download=yes
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2809055&download=yes
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2809055&download=yes

We finish this section by suggesting that the new model can be used for specification
testing of the standard GARCH models. In particular, one can consider testing the follow-
ing null hypothesis:

Ho: =0

versus an alternative hypothesis H, that Hy is false. This test can be interpreted as the test
for constant standardized conditional kurtosis of the returns against an alternative of a
time-varying conditional kurtosis. Since this test is for nested models, it is straightforward
to use already computed likelihood quantities to calculate the Likelihood Ratio test LR =
—21In(Lr(60%)/Lr(0)) 4 x3, where 0 = (a, 8,7, ), 0* :== {0\ ¢}. Although theoretically ¢
can take negative values, see Theorems 3 and 4 for restrictions, in practical applications the
easiest way to ensure that \? is always positive is to restrict all parameters to be positive,
ie. ¢ > 0. In this case the test is on the boundary of the parameter space for ¢, and the
Likelihood Ratio test has a nonstandard distribution, see Francq and Zakoian (2009) for

details.

6 Volatility Forecasts with RT-GARCH

We now focus on volatility forecasting using the RT-GARCH model. The forecasting exer-
cise is very similar to obtaining volatility forecasts with the standard GARCH(1,1) model
except for some slight differences. Recall that for the forecasting exercise we need the

following two equations:

E[/\ﬂ]:t—l] = o+ 5)\1:2—1 + 77}2—1 + (17)

and

Blrf|Fia] = BN Fia] + o(Ele] — 1), (18)
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where eq. (17) is the expectation of the conditional variance of the process and eq. (18) is
obtained by recursively substituting eq. (3) into the squared eq. (2) and taking expecta-

tions. Then k-step ahead volatility forecast is given by:

Theorem 6. Let the process (ry, \}) evolve according to eq. (15)-(16) and ¢, is symmetric
around zero i.i.d. random variables such that E (¢;) = 0 and var(e;) = 1. Then the k-step ahead,

k > 1, volatility forecast is given by the following formula:
Bl = BB IR+ ot BBl FI-1) = B G4Ac 3 (ERIFI- B3] ) +
+ (@1 + o) (Elery, 7l = 1),
where E[N}] is given by

o+ (¢1 + p2) {n(% + y2) + 1}

Blx] = 1—(B+7+7)

Y

withn = Ele}] —1and £ [Xﬂft] is an estimate of \? at time t.

Note that Theorem 6 provides the most general formulae for the RI-GARCH with
leverage and feedback. Forecasting formulae for the RI-GARCH model with leverage
only may be obtained by setting v; = 7> = ~, while for the basic RI-GARCH model by

setting v1 = 72 = yand ¢; = @2 = .

7 Application

7.1 Data and Methodology

To estimate and evaluate competing models we use 3 datasets of open-to-close returns,
namely IBM, General Electric (GE) and the S&P 500 index. For IBM and GE the data spans
from the 2nd of January 1998 till the 1st of December 2016, while for the S&P500 the time
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span is from the 28th of January 2003 till the 1st of December 2016. The detailed descrip-
tion of the data is provided in the Supplementary Material. To avoid estimation bias we
split the sample into two parts, the first part will serve for the model’s estimation, and the
remaining part will be used for an evaluation of the out-of-sample performance using an
expanding window scheme. As with any forecasting exercise there is no direct guidance
of the optimal splitting point. For presenting the main results, we reserve 2/3 of the whole
sample for the estimation and the rest of the sample for the forecast evaluation. For the
IBM and GE stocks this results in 3000 and 1500 observations for estimation and evalua-
tion respectively. For the S&P500 data we have 2000 and 1000 observations for estimation
and evaluation respectively. However, to make sure that our results do not depend on
the splitting point, we present results for different splitting points in the Supplementary
Material. In addition to our full sample results, due to the likelihood of structural breaks
during the financial crisis period we also present results for 2 subsamples: pre- and post-
crisis periods. The pre-crisis period spans from 2nd of January (28th of January 2003 for
the S&P 500 index) till the end of July 2008. The crisis and post-crisis period constitutes
the rest of the available sample. For subsamples for GE and IBM stocks we take 1500 and
500 obsevations for estimation and evaluation respectively. For subsamples for S&P500
data we use 1000 and 500 obsevations for estimation and evaluation respectively.

For out-of-sample forecast performance we compare RT-GARCH models with the stan-
dard GARCH(1,1), GARCH(1,2) with normal and Student-t innovations, APARCH model
with Student-¢ distributed innovations (the most sophisticated GARCH-type model, see
Hansen and Lunde (2005) for details), as well as Simple and Exponential NoVaS method-
ologies of Politis (2007). The specifications of all competing models are presented in Table
1. We exclude SV models from this comparison as SV models are outside of the Maximum
Likelihood framework. Moreover, since the purpose of this paper is not to propose the
best volatility model but rather investigate whether incorporating available current in-

formation in GARCH-type models will improve on existing GARCH models in terms of
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out-of-sample volatility forecasts, inclusion of SV models is not necessary to answer this
question.

The “true volatility” would be needed in order to directly evaluate the forecasting per-
formance of competing models. Without the true volatility process, the most common
approach instead is to use realized volatility as a proxy for the conditional variance of re-
turns. We calculate the 5-minute realized variance from the intraday high-frequency data
for each stock, which we then take to be the proxy for the conditional variance of returns

in out-of-sample forecast evaluations.

7.2 Results and Discussion

In this section we report the parameter estimates for the RI-GARCH, the RT-GARCH
with leverage effect (RI-GARCH-L) and the RT-GARCH with leverage and feedback effect
(RT-GARCH-LF) models. Results are presented in Table 2. For all RT-GARCH models and
all datasets the parameter ¢ is positive and significantly different from zero. Note that for
the model with leverage, the value of the parameter ¢, is much larger than the value of
the parameter ¢,, pointing at the fact that negative news contribute to volatility more than
positive ones.

For out-of-sample evaluation we use the only two “robust” loss functions (see Pat-
ton, 2011) in the context of volatility forecasting. A loss function is “robust” if for any
two volatility forecasts, 13, and h3,, their ranking according to expected loss is equivalent
whether it is done using the true conditional variance, o7, or some proxy 7, provided the
latter is conditionally unbiased, i.e. E[r}|F;_1] = E [67|Fi—1] = o}.

Tables 3-14 present the results. For the presentation of results we adopt the original
notation of Hansen et al. (2011), i.e. /\735% denotes the MCS M* that contains the best
models with probability 0.95. For both statistical loss functions, MSE and QLIKE, Real-

—

time-GARCH and RT-GARCH-L models are always in the MCS Mj.,, for all horizons,

while standard GARCH models most of the time fall outside of the MCS. We present
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the results for full sample as well as the results for pre- and post-crisis (including crisis)
subsamples.

We start by discussing the full sample results. For the 1-step ahead out-of-sample
volatility forecasts using the MSE loss function, the MCS for the IBM stock is quite wide
and consists of all competing models except for the NoVaS methodologies, while for the
QLIKE loss function the MCS consists solely of all RI-GARCH models. For the GE stock
for 1-step ahead forecasts MCS consists of all RI-GARCH models and the APARCH(2,2)
model for both loss functions. Finally, for the S&P 500 stock the MCS based on MSE loss
function is quite small and consists only of RT-GARCH and RT-GARCH-L models, while
the MCS based on the QLIKE loss function consists of RT-GARCH, RT-GARCH-L and
APARCH(2,2) models.

For the 5-step ahead forecasts the picture is very similar, except that for MSE loss func-
tion MCS sometimes includes the GARCH models with Student-¢ innovations. For exam-
ple, for the 5-step ahead forecasts using IBM data for the MSE loss function the MCS con-
sists only of RT-GARCH model, while for the QLIKE loss function both GARCH models
with Student-¢ innovations are included as well. A similar picture can be seen for the GE
stock for the MSE loss function, while for the QLIKE loss function the MCS consists again
only of RT-GARCH, RT-GARCH-L and the APARCH(2,2) models. For the S&P 500 stock
for the MSE loss function the MCS consists of all competing models but NoVaS method-
ologies, while for the QLIKE loss function the MCS consists only of the RI-GARCH and
APARCH(2,2) models.

For longer horizons, i.e. 10- and 15-step ahead out-of-sample volatility forecasts, the
picture is quite different. For all datasets the MCS consists only of the RT-GARCH and the
APARCH(2,2) models with the occasional inclusion of RT-GARCH-L model and some-
times GARCH models with Student-¢ innovations.

Interestingly, for all horizons the standard GARCH models with Gaussian innovations

are excluded from the MCS for all stocks. It is also interesting to note that most of the time
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the MCS for all datasets contains models with Student-¢ innovations (which allows for
heavier tails) and RT-GARCH models. However, RI-GARCH models perform no worse
(or most of the time even better) with just the normal innovations. As discussed in sec-
tion 2 the possible reason for this is that RT-GARCH models account for a time-varying
conditional kurtosis, therefore allowing the volatility to adjust to a new level faster than
the other standard GARCH models. It is also possible that the forecasting performance
of RT-GARCH models can be further improved if one considers Student-¢ innovations
for the error term. On the other hand, estimated on the full sample the RT-GARCH model
with leverage and feedback effects (RT-GARCH-LF) seems to perform worse than the sim-
ple RT-GARCH or RT-GARCH-L, as it can potentially overfit the data due to the model’s
higher complexity (i.e. higher number of parameters).

Given that all samples under consideration include the financial crisis, it is important
to account for the structural break in the volatility of returns. If one is to account for the
structural break, the parameters of each model have to be re-estimated during/after the
break. We address this issue by estimating and evaluating the models on two subsamples:
pre- and post-crisis period, where the latter includes the crisis period as well.

While the forecast evaluation results for the pre-crisis period are quite similar to the
full sample results, the crisis period MCS is quite different for all stocks. For the crisis
and post-crisis period the MCS for both loss function mainly consists of RT-GARCH-L,
RT-GARCH-LF and the APARCH(2,2) models. This result is general for all stocks and all
horizons. The difference in results emphasizes that during volatile periods it is crucial to
account for both leverage and time-varying kurtosis.

There are several reasons why NoVaS methodologies are never in the MCS. First of all,
Politis (2007) compares forecasts with the Mean Absolute Deviation (MAD) loss function,
which as we now know, due to Patton (2011), is not a robust loss function in the context
of volatility forecasting. The other reason may be that the comparison of NoVaS forecasts

was done with the use of squared returns as a volatility proxy, which was shown to be
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quite a noisy proxy for volatility of returns, see Hansen and Lunde (2006).

We also evaluate our forecasts with the risk management loss function, i.e. we com-
pute 1-step VaR forecasts using all competing models. For evaluation of VaR forecasts we
compute the Violation Ratio (VR), which is the ratio between the number of returns that
exceeded the VaR forecast to the number of the expected exceedances, accounting for a
significance level of o which we take to be 5%. If the model is accurate, the violation ratio
is expected to be exactly 1. A model has good forecasts if the VR is between 0.8 and 1.2;
and a model has quite imprecise forecasts if the VR<0.5 or VR>1.5. However, computing
only the VR is not enough for evaluating VaR forecasts as it is the measure of the uncondi-
tional coverage. We therefore also compute the Likelihood Ratio (LR) for the conditional
coverage from the failure process of the VaR forecasts, see Christoffersen (1998) for details.
Table 15 presents the results. Out of all models with a correct conditional coverage, RT-
GARCH (for all stocks) and RT-GARCH with leverage (for IBM stock) are the only models
that have an acceptable VR. In addition, this ratio will be far better than for the standard
GARCH(1,1) model with normal errors for all stocks under consideration. This result
further emphasizes the effect of having a time-varying kurtosis of returns, which allows
for the possibility of adjusting it over time in response to the data, playing a potentially
crucial role for forecasting.

After identifying which models are in the MCS, it is still interesting whether we can
pin down a single superior (in the sense that it is not outperformed by any other com-
peting model) forecasting model among those in the MCS. One possibility is to conduct
an out-of-sample test that has the ability to control either for possible over-fitting or over-
parametrization problems, which gives a more powerful framework to evaluate the per-
formances of competing models. We choose to conduct Hansen’s (2005) Test for Superior
Predictive Ability (SPA). For reasons of brevity results of the SPA test are presented in the
Supplementary Material to this paper. The overall conclusion is that the winning model

(among those in the MCS) is one of the RI-GARCH models for shorter horizons (i.e. 1-
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and 5-step ahead) and either APARCH model or RT-GARCH/RT-GARCH-L for longer
horizons.

In addition, we perform the likelihood ratio test for Hy : ¢ = 0, adjusted for testing
on the boundary, see Francq and Zakoian (2009) for details. The values of the test statistic
are 8.5, 4.66 and 9.72 for IBM, GE and S&P500 respectively, which are significant at a
5% significance level. This suggests that all time series have a time-varying conditional
kurtosis.

Moreover, to show that the RT-GARCH model is a better fit to the data, especially in
the tails, figures 5-7 display the QQ plots of the standardized errors from the estimated
GARCH(1,1) and RT-GARCH models.
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Figure 5: QQ-plots of the implied error distribution for IBM stock.
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Figure 6: QQ-plots of the implied error distribution for GE stock.
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Figure 7: QQ-plots of the implied error distribution for S&P500 index.

8 Conclusion

Volatility of asset returns is difficult to forecast due to its latent nature. In an attempt to

describe the volatility process standard GARCH models incorporate only past informa-
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tion in modelling volatility of assets” returns. Up until now there was no evidence on the
relevance of incorporating current information into the conditional variance modelling
in GARCH-type models. We fill this gap by proposing a new model, the RI-GARCH,
which incorporates current information. The model is very general; it nests the stan-
dard GARCH models as its special case, and can easily incorporate leverage and feedback
effects by differentiating between positive and negative news. The new term, i.e. the
current realization of the standardized return, can be viewed in two ways: as a change
in the information set, and as an extra shape parameter for the density of returns which
determines the “peakedness” and/or thickness of the tails. This shape parameter allows
the conditional distribution of returns to have a time-varying kurtosis, which accounting
to the empirical application may well play a crucial role in forecasting volatility during
turbulent times.

Estimation of the RT-GARCH revealed that (i) incorporating current information into
volatility modelling allows the model to respond quicker to sudden changes of the un-
conditional level of volatility; and (ii) the combination of ex-ante and ex-post volatility
measurement helps to improve out-of-sample volatility forecasts and empirical fit when
compared to the forecasts and empirical fit given by the other competing models. More-
over the new model offers a framework for specification testing, which can be thought of
a test for constant conditional kurtosis versus a time-varying one.

We finish by suggesting some routes for future research. It would be of interest to
investigate whether the empirical performance of the proposed model can be further im-
proved by incorporating some realized measures as in Hansen et al.(2011) and /or assum-
ing Student-¢ distribution for innovations. In addition, deriving a continuous-time limit
of the RT-GARCH model will provide an answer of where exactly between GARCH and

SV models it stands. We leave these suggestions for future research.
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Table 2: Parameter estimates of RT-GARCH models

Parameter estimates of RT-GARCH

Dataset ! o) v %
IBM 0.0006 0.8755 0.0780 0.0758
(18 x 107%) (9%107%) (14 % 107%) (21 % 107%)
GE 0.0001 0.9211 0.0627 0.0378
(14 % 107%) (38 % 107%) (2%1077) (17 107%)
S&P 500 0.0001 0.9124 0.0726 0.0138
(12%107%) (14 107%) (45 % 1073) (11%107%)

Parameter estimates of RT-GARCH with leverage

Dataset « 15} ~ V1 Vo
IBM 0.0003 0.8883 0.0703 0.0475 0.0886
(15%107%) (6%107%) (11%107%) (19 x107%) (27%107%)
GE 0.0001 0.9273 0.0550 0.0237 0.0529
(2.7%107%) (38 x107%) (4.2%107%) (2%107%) (48 % 1073)
S&P 500 0.0016 0.8995 0.0718 0.0003 0.0481
(25 % 107%) (15 % 1073) (6.7%107%) (27 % 107%) (8.1%107%)

Parameter estimates of RT-GARCH with leverage and feedback

Dataset o B N gp) ©1 )
IBM 0.0001 0.8599 0.0328 0.0706 0.0903 0.1319
(17%107%) (30 % 10™%) (14 x107*) (15 % 107%) (26 % 107*) (29 % 107%)
GE 0.0001 0.9225 0.0343 0.0322 0.0450 0.1253
(15%107%) (40 % 1073) (11%107%) (10 % 107%) (18 x 1073) (27 % 1073)
S&P 500 0.0023 0.9185 0.0127 0.0605 0.0004 0.0740
(4.2%107%) (1.8 1073) (5% 10™%) (23 %107%) (1074 (4.6 % 10™%)

Note: The table presents parameter estimates for respective models based on the full sample. The sample size used for e:
stocks and 2000 for SP500 index.
Standard errors, calculated numerically, are given in parentheses.
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Appendix.

To derive the eq.(4) observe that A\? cn be written as follows:

2
Tt

)‘3 =byq + <P€t2 =biq + SOF-
¢

Provided that A\? > 0, it follows that:

1 1 1 1 dor? 1 1 2r?
A= _btfl + 5/ 0 e = Sbia + _btfl 1+ f e LR R f :
2V 2 2, 2 2 0,

2

2
= b, 1+90 L i Tt patyr? B _ i Lt tatyr? 4+ { Tt Lta+yr2, "‘5)‘?2} _
bio1 b b bt 2
a 907} 5j90 i1\ 2
+—+ + 5’ ) Ti—js

where in the first line of the derivations we used that for x << 0 it holds that (1 + 2)* ~
1+ aw.

Proof of Theorem 1. Consider the general model:
e = A€t

)\2_04+5>\t 1+77"t 1+‘P5t7

where {¢,} is i.i.d. random variables such that F' (¢;) = 0, F (¢7) = 1 with the density f.. In

order to compute P(r; < c) note that the first equation can be rewritten as

Ty = \/oz + B2+ 12 | + pete

such that

P(ry <€) = P(\Ja+ BNy + 717 + péfer < ).

Since the scaling factor of ¢, is positive there is one unique value of d such that
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\/a + BN 12, +pete < c

for all e < d. To obtain d we first square the above equation such that

(o + 6)\?_1 + 77‘752_1 + (,DdQ)d2 =< (o + /8)\?_1 + vrf_l)d2 + g0d4 = 2. (19)

Eq. (19) is a quartic equation in d whenever ¢ # 0 and is quadratic equation in d whenever
¢ = 0 (which is simply the usual GARCH(1,1) case). For quartic equation the solutions

are given by:

dio =44V by +4c%p — b
12 = 20

. Vi +4Rp+ b
3.4 = 20

with b1 = a + A2, + yr? ;. We disregard z3 4 since we are only interested in the real

valued solutions, such that we have:

b? 42 — by
d(c) = Sign(c)\/ 1 +2; L (20)

and

d(c)
P(ry<c)= fe(x)dx.

In order to emphasize the dependence of d(c) on the past information as well as the pa-

rameter vector § = (a, 3,7, p)’ we adopt the following notation:

\/b? 42 — by
d(e,by_1,0) = sign(c)\/ =l +2; L (21)
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The solution to the quadratic equation in d for the case ¢ = 0 is given by:

d(C, bt_l,Q) = C/\/bt_l, (22)

which corresponds to the standard GARCH(1,1) model (as b;_; = o7 whenever ¢ = 0),
for which the conditional density of the returns is just f,(r|F—1) = \/% fele) = fele)/oy,
where F;_; denotes the information set up to time ¢ — 1. To obtain the density in the case

¢ # 0 we use Leibniz integral rule with variable limits to get:

OP(ry <c¢)  0d(c,by_1,0)

fr(r|ft—1) = e = e |c:7’ fs(d(ra bt—la 9)) =
33@gn \/b§1+4c — b g, n() VO FAp — by ) 1><
ey 2 2%
1
5(17? | +actp)” 28090} fe(d(r,bi-1,0)) =
gnlr) (b 1,0)
= sign(r)r rbi1,0)) =
! (07_y + 4r2p) (\/biy + 4r2p — by_1) o
- a (b, )
d(r,bi_1,0)/b?_| + 4r2p
Remark: Note that 6529" () — 2§(c), where §(-) is a Dirac delta function which is zero

everywhere except at 0, where §(0) = oo, therefore the above formula holds for » # 0.
Before we calculate the limit of the above equation at » = 0, note that d(r, b;_1,6) in the
denominator iinvolves sign(r), while the numerator involves |r| = rsign(r), we thus can

write the density as:

r

d(r,bi_1,0)\/b? | + 4r2p

fT(T|]:t—1) - fe(d(r7 bt—lae))
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\/b? r2o—by_1
with d(r,b;_1,0) = \/ bt‘ﬁ;l:@ "1 Note that € = d(r¢;bi-1,6p). We now calculate the

limit of the density function at » = 0. First observe that

T T T
llm g = =

1
0 d(T’ bt L 0) (b7 +40r?)2 —b; 1 b7y 4opr? 1/2 b
20 4p? 4p? 2¢

r r
= = = bt—l'

1/2 < 1 4pr? )
bt 4pr? 1 —1
W (e g)™ 1) Vi (1 b

And as a result we have the following limit

’ f(d(r by, 0) = —

lim ,(r|F,-1) = lim

r=0.d(r,by_1,0)/b?_ | + 4r2p

The corresponding cumulative distribution function is given by

d(r,be—1,0)
F(r|F ) = / £(2)dz = F. (d(r,b_1,0)).

—00

The ;" conditional moment of returns can be derived as follows (for the ease of expo-

sition we write d(r) instead of d(r, b;_1,0)):

[e.9]

BIPIR = [ PR - / i T A =

/ Vb edi) >>dr:/ sV PR i (23)

N bi—1 + 2pd(r)?

Now observe that
bi_1 + 2pd(r)?

dr = d(d(r)) b od( )
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Thus with a change of variable of integration eq.(23) can be written as

BIRa) = [ P e = [ ) =

bi_1 + 2pd(r)? oo

= [y (z)t1+¢d<7~>2)mfe(d(r))d(d(r)) = [~y (b 5 >)j/2fe<d<r>>d<d<r>> -

o0 —00

00 ) r 2 i/2 00 N : r 2
= [Ty (@ 5E)) T ptanata) = [ el (00555 ) paeata)

o0 —00

=8| [ dey s + 5 [ e aeae)| -

21 ) o

=0 | B Y] + 5B iy

where in the third line of this derivations we used the first-order Taylor approximation
and the fact that d(r) is symmetric around zero, E[d(r)] = 0.

Proof of Theorem 2. The general model is given by:

Tty = >\t €t (24)

A=t BN ri e (25)

Since the error term ¢, is i.i.d, it is then obvious that the error process (¢;):cz is always
strictly stationary and ergodic. Thus, (r;).cz is a strictly stationary process if and only if
(At)iez is strictly stationary. Therefore, the task of deriving the strict stationarity conditions
for the whole process (r;, \¢)iez can be reduced to deriving strict stationarity conditions
for (\}):ez, given by eq.(25).

Let’s now express (A?);cz solely in terms of the error process (e;):cz. Repeatedly substi-

tuting for A7, in eq.(25) , we have:

t t fi-1
A= H(ﬂ +yer) + Z <H(5 + VE?—j—1)> (a + peri), t=>2. (26)
i=1 '
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In order for eq.(26) to be well defined we need either to assume the trivial o-algebra F;
(and a probability measure 1) for the starting value A} or to assume that the system ex-
tends infinitely far into the past. We proceed by implementing the former approach, defin-
ing:

PN eT)=po(T) VI eB and o ((0,00)) =1, (27)

where B denotes the Borel sets on [0, c0). In order to find strict stationarity conditions of A7
we next rewrite eq.(25) in the form of the stochastic difference equation Y;; = A,Y; + By,

where Y}, A; and B, are given by:
A; = B+ e, B, = a+ e, and Y, = A\ (28)

Since sequences (A;)ien and (B;)en are measurable transformations of the strictly sta-
tionary and ergodic process (¢;):cn We can make use of the Theorem 3.5.8 of Stout (1974)
to claim that these sequences are strictly stationary and ergodic as well as the sequence
U = (A, By)ien- If we rewrite eq.(26) in terms of eq.(28), it follows that (Y;)ien = (A2)ien
is the solution of the stochastic difference equation Y;; = A;Y; + B,. Every such solution

then should satisfy the following representation:

Yisi =AY +B = AAA Yy 1 +AB 1 +B = AlA Ay oY o+ AA 1By o+ AB 1+ By =

=0

i=0 \j=0

with the usual convention that Hj_:lo Ai_; = 1 for the product over an empty index set.
Let’s denote by Y an arbitrary R-valued random variable, which is defined on the same

probability space as W. Note that Y and ¥ should not necessarily be independent. The
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solution (Y, ¥) of eq.(29) is then given by:
t—1 t—1 t—1
Y (Y, ¥) = (H Ai) Yo+ ( H Aj) Bi_i1.
i=0 i=0 \j=t—i
We have shown earlier that the sequence ¥ = (A;, B,) is strictly stationary and ergodic, we

j=n—1

can now apply Theorem 1 of Brandt (1986) to deduce thaty, (V) = ">, (Ht_l Aj) By,

t € N is strictly stationary solution if and only if the following conditions are satisfied:
HD(A(] - O) > O

or

—o0 < E'log|Ay| <0 E (log|By|)" < oo,

where zt = max(0,z) for + € R. Plugging in the expressions for A, and By, given by

eq.(28) we get the following strict stationarity conditions:
—oo§E10g|B+76(2)‘ <0 E(log‘a+gpeg})+<oo,

in addition to requiring that 3 > 0,7 > 0and ¢ # 0. &

Proof of Theorem 3.
The result follows directly from combining eq. (6) and eq.(7). B

Proof of Theorem 4.
The proof follows directly from Theorem 3 and the fact that E[r}] = E[M\] + ¢(E[e}] — 1).
For proving the last claim of the Theorem 4 notice that since E[r;|F;_;] = 0 for all ¢, then

cov(ry, rs|Fio1) = Elrrg|Fioq] for s < t, which we will calculate by direct integration
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against the density of r, i.e.

E [ryrg| Fioi] / / Te7s frors (T2, 7's)dredrs = / / Te7s fr (12) fry (7s)dridrs =

/ / (r <bt ﬁgpdrt))mfe(( >><S>(bs 1+god<rs>) feld(ry))d(d(r,))d(d(r,)) =

r 1/2 TSZ 1/2
[t (s 550 >> gttt (b (14 550 )t ar) =

/.
[ a2 (e 28 ) g apacateoy [ o (s B et =
oo

—0o0

#5Z00E)) atropatatr) [ el (( T ))fe(( D(d(r.) =

—0o0

88

d(r

8

03| [~ dtmosiaonao) + 57 [ d i .

W] [ dvasdea) + 55 [ s <rs>>]

= b2l {E [d(r,)] + Qbf_lE [d(rt)?’}} [E [d(rs)] + Qbf_lE [d(rs)ﬂ]

Given that the error term d(r) is symmetric around zero, i.e. its mean and skewness are
zero, we get exactly zero in the last equation above. B

Proof of Theorem 5.

E[rt] E[Xl ] (CVWLB/\? 1+77"t 1+90€t)(a+5/\t 1+77"t 1+90€t)5t = E[E?]‘anﬁE[/\?—l]E[eﬂ‘l‘
+ 2a7E[r} || Ele]] + 200E[e]] + B2 EN_ | Elei] + 28vEN | E[r] ] Ele]]+

+ 28BN ] Ele] + 9 Elri ] Blei] + 207 E[ri_ | Ele}] + ¢ E[¢}].

Substituting eq.(7) in the equation above and rearranging we get:

(a +4avp)Ele]] + (208 + 20y + 48v9) E[N_ || Ele;] + 2ap + 49*7) E[ef]+

+ (87 +287) EIN_Elg] + (289 + 2v9) EIN_ | Elef] + VE[r]Elef] + ¢* Ele]]
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If r; is fourth order stationary (E[r{] = E[r}_,]), then

E[ri] = (o + dayp)Elel] + (2a8 + 20y + 4B870) ENE | Ele}] + (2aup + 49*y) E[€5]+
(8 4+ 289 BN B[ + (280 + 2v0) BN ELED] + sDQE[ef]] [1 - %E[rﬂE[eﬂ} 7

Since E[r*] must be positive, 7> must also satisfy (in addition to case (1) or case (2)):

1
1—-~El>0 & < —r. [
7 [Et] ,y E[E?]

Proof of Theorem 6.

We start by writing down the RT-GARCH model with leverage and feedback:

T = M€t

)\? =oa+ 5)\?_1 + ’71Tt2_1]l(rt>0) + '727‘152_1]1(rt§0) + 9016,521(6t>0) + 90261?]1(6t§0)' (30)

Denoting by x := E[¢}] and n := xk — 1 and following the same steps as in the proof of

Theorems 3 and 4 (see details in in the Supplementary Material to this paper) we have:

Elr}] = a+BEN_ |+ mE[F{ |r > 0+ E[rf r < 0]+ ¢ E [ef|e, > 0] + a2 E [ef]e, < 0]
(31)

and

EN] = a+BEN_ ||+ E[r; |re > 0]+%E[r_|r: <0+ E [€le; > 0] + 02 F []]e; < 0] .
(32)
Combining eq.(31)-(32) then yields:

El?) = BN + (o1 + ¢2) (E <] - 1) 33)
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In addition we also have that the unconditional first moment of \? is

a+ (1 +¢2) n(y +92) + 1

B = 1—(B+m+7) 54
Using eq.(31) and (32) we can write:
EDIF] = a+ (g1 +92) [n(n +72) + 1]+ (8 +m + 1) E M| F] . (35)

Now note that from eq.(34) we have:

at (o1 + @) [ +7) +1=[1-(B+n+7)]E [N,

which, when substituted back into eq.(35), together with eq.(33) provides us with the for-

mula in Theorem 6. B
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